Читайте также:
|
|
Посмотрим теперь, как изменяется течение жидкости из-за нового члена с вязкостью. Рассмотрим несколько подробнее две задачи. Первая — обтекание жидкостью цилиндра; эту задачу мы пытались решить в предыдущей главе, используя теорию невязкой жидкости. Оказывается, что сегодня возможно найти решение вязких уравнений только для некоторых специальных случаев. Так что кое-что из того, что я расскажу вам, основано на экспериментальных измерениях, считая, конечно, что экспериментальная модель удовлетворяла уравнению (41.17).
Математически задача состоит в следующем: мы хотим найти решение для потока несжимаемой вязкой жидкости вблизи длинного цилиндра диаметром D. Поток должен определяться уравнением (41.17) и
W=ÑXv (41.18)
с условием, что скорость на больших расстояниях равна некоторой постоянной V (параллельной оси х), а на поверхности цилиндра равна нулю. Так что
vя=vу=vz=0 (41.19)
при
x2+y2=D2/4.
Это полностью определяет математическую задачу.
Если вы вглядитесь в эти выражения, то увидите, что в задаче есть четыре различных параметра: h, r, D и V. Можно подумать, что нам придется иметь дело с целой серией решений для разных V, разных D и т. д. Вовсе нет. Все возможные различные решения соответствуют разным значениям одного параметра. Такова наиболее важная общая вещь, которую мы можем сказать о вязком потоке. А чтобы понять, почему это так, заметьте сначала, что вязкость и плотность появляются в виде отношения h/r, т. е. удельной вязкости. Это уменьшает число независимых параметров до трех. Предположим теперь, что все расстояния мы измеряем в единицах той единственной длины, которая появляется в задаче: диаметра цилиндра D, т. е. вместо х, у, z мы вводим новые переменные х', у', z', причем
x=x'D, y=y'D, z=z'D.
При этом параметр D из (41.19) исчезает. Точно так же если будем измерять все скорости в единицах V, т. е. если мы положим v=v'V, то избавимся от V, а v ' на больших расстояниях будет просто равно единице. Поскольку мы фиксировали наши единицы длины и скорости, то единицей времени теперь должно быть D/V, так что мы должны сделать подстановку;
t=t'D/V. (41.20)
В наших новых переменных производные в уравнении (41.18) тоже изменятся: так, д/дх перейдет в (1/D)(д/дх') и т. д., так что уравнение (41.18) превратится в
А наше основное уравнение (41.17) перейдет в
Все постоянные при этом собираются в один множитель, который мы, следуя традиции, обозначим через :
Если теперь мы просто запомним, что все наши уравнения должны выписываться для величин, измеряемых в новых единицах, то все штрихи можно опустить. Тогда уравнения для потока примут вид
и
с условиями,
v=0, для
х2+у2 =1/4 (41.24)
и
vx=1, vy=vz=0
для
x2+y2+z2>>1.
Что все это значит? Если, например, мы решили задачу для потока с одной скоростью V 1 и некоторого цилиндра диаметром D1 а затем интересуемся обтеканием цилиндра другого диаметра D2 другой жидкостью, то ноток будет одним и тем же при такой скорости V2, которая отвечает тому же самому числу Рейнольдса, т. е. когда
В любых случаях, когда числа Рейнольдса одинаковы, поток при выборе надлежащего масштаба х', у', z' и t' будет «выглядеть» одинаково. Это очень важное утверждение, ибо оно означает, что мы можем определить поведение потока воздуха при обтекании крыла самолета, не строя самого самолета и не испытывая его. Вместо этого мы можем сделать модель и провести измерения, используя скорость, которая дает то же самое число Рейнольдса. Именно этот принцип позволяет нам применять результаты измерений над маленькой моделью самолета в аэродинамической трубе или результаты, полученные с моделью корабля, к настоящим объектам. Напомню, однако, что это можно делать только при условии, что сжимаемостью жидкости можно пренебречь. В противном случае войдет новая величина — скорость звука. При этом различные модели будут действительно соответствовать друг другу только тогда, когда отношение V к скорости звука тоже приблизительно одинаково. Отношение скорости V к скорости звука называется числом Маха. Таким образом, для скоростей, близких к скорости звука или больших, поток в двух задачах будет выглядеть одинаково, если и число Маха и число Рейнольдса в обеих ситуациях одинаковы.
Дата добавления: 2015-08-20; просмотров: 58 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Вязкий поток | | | Обтекание кругового цилиндра |