Читайте также:
|
|
Теперь, чтобы описать деформации, мы должны связать их с внутренними силами — с напряжениями в материале. Мы предполагаем, что закон Гука справедлив для любого кусочка материала, т. е. что напряжения всюду пропорциональны деформациям. В гл. 31 мы определили тензор напряжений Sij как i-ю компоненту силы, действующей на единичной площадке, перпендикулярной оси j. Закон Гука говорит, что каждая компонента Sijлинейно связана с каждой компонентой напряжения. Но поскольку S и l содержат по девяти компонент, то всего для описания упругих свойств материала требуется 9X9=81 возможный коэффициент. Если материал однороден, то все эти коэффициенты будут постоянными. Мы обозначим их C ijkl определив посредством уравнения
где каждый значок i, j, k и l может принимать значения 1, 2 или 3. Поскольку коэффициенты Сijkl связывают один тензор с другим, они тоже образуют тензор — на этот раз тензор четвертого ранга. Мы можем назвать его тензором упругости.
Предположим, что все C ijkl известны и что к телу какой-то произвольной формы мы приложили сложные силы. При этом возникнут все сорта деформаций — тело как-то исказится. Каковы будут перемещения? Вы понимаете, что это довольно сложная задача. Если вам известны деформации, то из уравнения (39.12) можно найти напряжения, и наоборот. Но напряжения и деформации, которые возникли в любой точке, зависят от того, что происходит во всей остальной части материала.
Наиболее простой способ подступиться к такой задаче — это подумать об энергии. Когда сила F пропорциональна перемещению х, скажем F=kx, то работа, затраченная на любое перемещение х, равна kx2/2. Подобным же образом энергия w, запасенная в любой единице объема деформированного материала, оказывается равной
Полная же работа W, затраченная на деформацию всего тела, будет интегралом от w по всему его объему:
Следовательно, это и есть потенциальная энергия, запасенная во внутренних напряжениях материала. Когда тело находится в равновесии, эта внутренняя энергия должна быть минимальной. Таким образом, проблема определения деформаций в теле может быть решена нахождением таких перемещений и по всему телу, при которых W минимальна. В гл. 19 (вып. 6) я говорил вам о некоторых общих идеях вариационного исчисления, применяемого при решении задач на минимизацию подобного рода. Однако сейчас мы больше не будем вдаваться в подробности этой задачи.
Сейчас нас главным образом будет интересовать то, что можно сказать относительно общих свойств тензора упругости. Прежде всего ясно, что на самом деле в Cijkl содержится не 81 различный параметр. Поскольку Sij и eij — симметричные тензоры, каждый из которых включает только шесть различных элементов, то C ijkl состоит максимум из 36 различных компонент. Обычно же их гораздо меньше.
Рассмотрим специальный случай кубического кристалла. Плотность энергии w для него получается такой:
т. е. всего 81 слагаемое! Но кубический кристалл обладает определенными симметриями. В частности, если кристалл повернуть на 90°, то все его физические свойства останутся теми же. Например, у него должна быть одна и та же жесткость относительно растяжения как в направлении оси у, так и в направлении оси х. Следовательно, если мы переменим наши определения осей координат х и у в уравнении (39.15), то энергия не должна измениться. Поэтому для кубического кристалла
Cхххх = Суууу=Czzzz. (39.16)
Мы можем еще показать, что компоненты, наподобие Сххху, должны быть нулями. Кубический кристалл обладает тем свойством, что он симметричен при отражении относительно любой плоскости, перпендикулярной к одной из осей координат. Если мы заменим у на —y, то ничего не должно измениться. Но изменение у на - у меняет еxy на - еxy, так как перемещение в направлении + у будет теперь перемещением в направлении - у. Чтобы энергия при этом не менялась, Сххху должно переходить в - Сххху Но отраженный кристалл будет тем же, что и прежде, поэтому Сххxy должно быть таким же, как и - Сххху. Это может произойти только тогда, когда оба они равны нулю.
Но вы можете сказать: «Рассуждая таким же образом, можно сделать и C yyyy =0! » Это неверно. Ведь здесь у нас четыре игрека. Каждый у изменяет знак, а четыре минуса дают плюс. Если у встречается два или четыре раза, то такие компоненты не должны быть равны нулю. Нулю равны только те компоненты, у которых у встречается либо один, либо три раза. Таким образом, для кубического кристалла не равны нулю только те С, у которых один и тот же значок встречается четное число раз. (Рассуждения, которые мы провели для у, имеют силу и для х и для z.) Таким образом, выживают только компоненты типа Сххуу, Схуху, Схуух и т. д. Однако мы уже показали, что если изменить все х на у и наоборот (или все z на x и т. д.), то для кубического кристалла мы должны получить то же самое число. Это означает, что остаются всего три различные ненулевые возможности:
Плотность же энергии для кубического кристалла выглядит так:
У изотропного, т. е. некристаллического, материала симметрия еще выше. Числа С должны быть теми же самыми при любом выборе осей координат. При этом, как оказывается, существует другая связь между коэффициентами С:
Cхххх=Cххуу+Cхуху (39.19)
Это можно усмотреть из следующих общих рассуждений. Тензор напряжений Sij должен быть связан с eij способом, который совершенно не зависит от направления осей координат, т. е. он должен быть связан только с помощью скалярных величин. «Это очень просто»,— скажете вы. «Единственный способ получить Sij из eij — умножить последнее на скалярную постоянную. Получится как раз закон Гука: Sij= (Постоянная)Xеij». Однако это не совсем верно. Дополнительно здесь можно вставить единичный тензор dij, умноженный на некоторый скаляр, линейно связанный с еij. Единственный инвариант, который можно составить и который линеен по е, — это Se jj. (Он преобразуется подобно х2 +y2+z2, а значит является скаляром.) Таким образом, наиболее общей формой уравнения, связывающего Sij с eij для изотропного материала, будет
(Первая константа обычно записывается как 2m; при этом коэффициенту равен модулю сдвига, определенному нами в предыдущей главе.) Постоянные (m, и l называются упругими постоянными Лямэ. Сравнивая уравнения (39.20) с уравнением (39.12), вы видите, что
Таким образом, мы доказали, что уравнение (39.19) действительно правильное. Вы видите также, что упругие свойства изотропного материала, как уже говорилось в предыдущей главе, полностью задаются двумя постоянными.
Коэффициенты С могут быть выражены через любые две из упругих постоянных, которые использовались ранее, например через модуль Юнга Y и отношение Пуассона s. На вашу долю оставляю показать, что
Дата добавления: 2015-08-20; просмотров: 173 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Тензор деформации | | | Движения в упругом теле |