Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Однородная деформация

Токи намагничивания | Кривая намагничивания | Индуктивность с железным сердечником | Электромагниты | Спонтанная намагниченность | Сущность ферромагнетизма | Термодинамические свойства | Петля гистерезиса | Ферромагнитные материалы | Необычные магнитные материалы |


Читайте также:
  1. Внутренняя деформация фразеологизмов
  2. Деформация бетона при многократно повторяющемся действии нагрузки.
  3. Деформация. Влияние на структуру металла.
  4. Расчет элементов конструкций по предельным состояниям второй группы (по образованию и раскрытию трещин и по деформациям)
  5. Связь между напряжениями и деформациями. Плоское напряженное и плоское деформированное состояние.
  6. Сплав — это однородная система, состоящая из двух и более химических элементов. Вещества, образующие систему, называют компонентами сплава.

В качестве первого примера посмотрим, что происходит с пря­моугольным бруском при однородном гидростатическом сжатии. Давайте поместим брусок в резервуар с водой. При этом воз­никнет сила, действующая на каждую грань бруска и пропор­циональная его площади (фиг. 38.2).

Фиг. 38.2. Брусок под действием равномерного гидростатического давления.

 

Поскольку гидростатиче­ское давление однородно, то напряжение (сила на единичную площадь) на каждой грани бруска будет одним и тем же. Прежде всего найдем изменение длины бруска. Его можно рассматри­вать как сумму изменений длин, которые происходили бы в трех независимых задачах, изображенных на фиг. 38.3.

 

Фиг. 38.3. Гидростатическое давление равно суперпозиции трех сжатий.

Задача 1. Если мы приложим к концам бруска давление р, то деформация сжатия будет отрицательна и равна p/Y:

Задача 2. Если мы надавим на горизонтальные грани бруска, то деформация по высоте будет равна - p/Y, а соответствующая деформация в бо­ковом направлении будет +s p/Y. Мы получаем

Задача 3. Если мы прило­жим к сторонам бруска дав­ление р, то деформация дав­ления снова будет равна p/Y, но теперь нам нужно определить деформацию длины. Для этого боковую деформа­цию нужно умножить на -s. Боковая деформация равна

так что

Комбинируя результаты этих трех задач, т. е. записывая Dl как dl1+Dl2+Dl3, получаем

Задача, разумеется, симметрична во всех трех направлениях, поэтому

Интересно также найти изменение объема при гидроста­тическом давлении. Поскольку V=lwh, то для малых пере­мещений можно записать

 

 

Воспользовавшись (38.6) и (38.7), мы имеем

Имеются любители назы­вать DV/V объемной де­формацией и писать

Объемное напряжение р (гидростатическое давление) пропор­ционально вызванной им объемной деформации — снова закон Гука. Коэффициент К называется объемным модулем и связан с другими постоянными выражением

Поскольку коэффициент К представляет некоторый практиче­ский интерес, то во многих справочниках вместо Y и s приво­дятся У и К. Но если вам нужно знать а, то вы всегда можете получить это значение из формулы (38.9). Из этой формулы видно также, что коэффициент Пуассона s должен быть меньше 1/2. Если бы это было не так, то объемный модуль К был бы от­рицательным и материал при увеличении давления расширялся бы. Это позволило бы добывать механическую энергию из лю­бого кубика, т. е. это означало бы, что кубик находится в неу­стойчивом равновесии. Если бы он начал расширяться, то рас­ширение продолжалось бы само по себе с высвобождением энергии.

Посмотрим, что получится, если мы приложим к чему-то «косое» напряжение. Под косым, или скалывающим, напряже­нием мы подразумеваем такое воздействие, как показано на фиг. 38.4.

Фиг. 38.4. Однородный сдвиг.

 

В качестве предварительной задачи посмотрим, ка­кова будет деформация кубика под действием сил, показанных на фиг. 38.5.

 

Фиг. 38.5. Действие сжи­мающих сил, давящих на вершину и основание, и рав­ных им растягивающих сил с двух сторон.

 

Снова можно разделить эту задачу на две: вер­тикальное давление и горизонтальное растяжение. Обозначая через А площадь грани кубика, мы получаем для изменения горизонтальной длины

Изменение же высоты по вертикали равно просто тому же выражению с обратным знаком.

Предположим те­перь, что мы имеем тот же самый кубик, и под­вергнем его действию сдвиговых сил, показанных на фиг. 38.6, а.

Фиг. 38.6. Две пары сил сдвига (а) создают то же самое напряжение, что и сжимающие = растягивающие силы (б).

Заметим те­перь, что все силы должны быть равными, ибо на тело не должен действовать никакой момент сил и оно должно находиться в равновесии. (Подобные силы должны дей­ствовать также и в случае, изображенном на фиг. 38.4, поскольку кубик находится в равновесии. Они обеспечиваются тем, что кубик «приклеен» к столу.) При таких условиях го­ворят, что кубик находится в состоянии чистого сдвига. Но об­ратите внимание, что если мы разрежем кубик плоскостями под углом 45°, скажем, вдоль диагонали А на фиг. 38.6, а, то полная сила, действующая в этой плоскости, нормальна к ней и равна Ö2G.Площадь, на которой действует эта сила, равна Ö2A;следовательно, напряжение, нормальное к этой плоско­сти, будет просто G/A. Точно так же если взять плоскость, наклоненную под углом 45° в другую сторону, т. е. по диа­гонали В, то мы увидим, что на ней действует нормальное сдавливающее напряжение, равное - G/A. Из этого ясно, что напряжение при «чистом сжатии» эквивалентно комби­нации растягивающего и сжимающего напряжений, направлен­ных под прямым углом друг к другу и под углом 45° к перво­начальным граням кубика. Внутренние напряжения и деформа­ции будут такими же, как и в большом кубике материала под действием сил, показанных на фиг. 38.6, б. Но эту задачу мы уже решили. Изменение длины диагонали задается уравнением (38.10):

(Одна диагональ сокращается, а другая удлиняется.)

Часто деформацию сдвига удобно описывать с помощью угла «искажения» кубика q, показанного на фиг. 38.7.

 

Фиг. 38.7. Напряжение сдвига q равно 2DD/D.

 

Из геометрии фигуры вы видите, что горизонтальный сдвиг б верхнего края равен Ö 2DD, так что

Напряжение сдвига g определяется как отношение тангенциаль­ной силы, действующей на грань, к площади грани g=G/A. Воспользовавшись уравнением (38.11), мы из (38.12) получаем

Или, если написать это в форме

Напряжение = ПостояннаяXДеформация

g=mq. (38.13)

Коэффициент пропорциональности mназывается модулем сдвига (или иногда коэффициентом жесткости). Вот как он выражается через Y и s:

Кстати, модуль сдвига дол­жен быть положительным, иначе мы бы могли полу­чить энергию от самопро­извольного сдвига кубика. Из уравнения (38.14) очевидно, что постоянная а должна быть больше -1. Теперь мы знаем, что о заключена между -1 и 1/2, но на практике, однако, она всегда больше нуля. В ка­честве последнего примера состояний подобного типа, когда напряженность постоянна по всему материалу, давайте рассмот­рим задачу о бруске, который растягивается и в то же время закреплен таким образом, что боковое сокращение невозможно. (Технически немного легче сжимать брусок и сдерживать бока его от «распирания», но в сущности — это та же самая за­дача.) Что при этом происходит? На брусок должны действо­вать боковые силы, которые препятствуют изменению его тол­щины,— силы, которых мы не знаем непосредственно, но ко­торые следует вычислить. Эта задача того же самого сорта, что мы решали, но только с немного другой алгеброй. Представьте себе силы, действующие на все три стороны, как это показано на фиг. 38.8.

Фиг. 38.8. Растяжение без сокращения бокового размера.

 

Мы вычислим изменение размеров и подберем та­кие поперечные силы, чтобы ширина и высота оставались по­стоянными. Следуя обычным рассуждениям, мы получаем для трех напряжений

Но поскольку по условию Dlу и Dl z равны нулю, то уравнения (38.16) и (38.17) дают два соотношения, связыва­ющие Fy и Fz с Fx. Совместно решая их, найдем

а подставляя (38.18) в (38.15), получаем

Это соотношение вы часто можете встретить «перевернутым» и с преобразованным квадратичным полиномом по s, т. е.

Когда вы удерживаете бока, модуль Юнга умножается на не­которую сложную функцию s. Из уравнения (38.19) можно сразу же увидеть, что множитель перед Y всегда больше едини­цы. Растянуть брусок, когда его бока удерживаются, гораздо труднее. Это означает также, что брусок становятся жестче, когда его боковые стороны закреплены, нежели когда они свободны.


Дата добавления: 2015-08-20; просмотров: 108 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Закон Гука| Кручение стержня; волны сдвига

mybiblioteka.su - 2015-2025 год. (0.009 сек.)