Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Необычные магнитные материалы

Охлаждение адиабатическим размагничиванием | Ядерный магнитный резонанс | Токи намагничивания | Кривая намагничивания | Индуктивность с железным сердечником | Электромагниты | Спонтанная намагниченность | Сущность ферромагнетизма | Термодинамические свойства | Петля гистерезиса |


Читайте также:
  1. II. Материалы и методы
  2. II. Природные каменные материалы
  3. VI. Контрольно-измерительные материалы
  4. Аттестационные материалы
  5. Виды гидроизоляции, применяемые материалы
  6. Виды подвесных потолков, материалы, используемые для их выполнения.
  7. ВОПРОС 5: Электромагнитные излучения распределенных источников

Здесь мне бы хотелось рассказать о некоторых более экзо­тических магнитных материалах. В периодической таблице есть немало элементов, имеющих незаполненные внутренние электронные оболочки, а следовательно, и атомные магнит­ные моменты. Так, сразу вслед за ферромагнитными элемента­ми — железом, никелем и кобальтом — вы найдете хром и мар­ганец. Почему же они не ферромагнитны? Ответ заключается в том, что в выражении (37.1) член с К для этих элементов имеет противоположный знак. В решетке хрома, например, направле­ния магнитных моментов атомов чередуются друг за другом (фиг. 37.13, б).

Фиг. 37.13. Относительная ориентация элек­тронных спинов в различных материалах:

а — ферромагнетик;, б — антиферромагнетик; в — феррит.

Так что со своей точки зрения хром все же «магнетик», но с точки зрения технических применений это не пред­ставляет интереса, так как не дает внешнего магнитного эффекта. Таким образом, хром — пример материала, в котором кванто-вомеханический эффект вызывает чередование направлений спинов. Такой материал называется антиферромагнетиком. Упорядочивание магнитных моментов в антиферромагнитных материалах зависит и от температуры. Ниже критической тем­пературы все спины выстраиваются в чередующейся последо­вательности, но если материал нагрет выше определенной тем­пературы, которая по-прежнему называется температурой Кюри, направления спинов внезапно становятся случайными. Этот рез­кий внутренний переход можно наблюдать на кривой удельной теплоемкости. Он проявляется еще в некоторых особых «маг­нитных» эффектах. Например, существование чередующихся спинов можно проверить по рассеянию нейтронов на кристалле хрома. Нейтрон сам по себе имеет спин (и магнитный момент), поэтому амплитуда его рассеяния различна в зависимости от того, параллелен ли его спин спину рассеивателя или противо­положен. В результате нейтронная интерференционная карти­на для чередующихся спинов отлична от картины при случай­ном их распределении.

Существует еще один сорт веществ, у которых квантово-механический эффект приводит к чередующимся спинам элект­ронов, но которые тем не менее являются ферромагнетиками, т. е. их кристаллы имеют постоянную результирующую намаг­ниченность. Идея, лежащая в основе объяснения свойств таких материалов, иллюстрируется схемой на фиг. 37.14.

Фиг. 37.14. Кристаллическая структура минерала шпинель (MgOAl2O3).

Ионы Mg2+ занимают тетраэдрические места, и каждый из них ок­ружен четырьмя ионами кислорода; ионы А13+ занимают октаэдрические места, и каждый окружен шестью ионами кислорода.

 

На схеме показана кристаллическая структура минерала, известного под названием шпинели (MgOAl2O3), который, как это показано, не является магнетиком. Этот минерал содержит два сорта ме­таллических атомов — магний и алюминий. Если теперь заме­нить магний и алюминий магнитными элементами типа железа, т. е. вместо немагнитных атомов вставить магнитные, то полу­чится преинтереснейший эффект. Давайте назовем один сорт атомов металла а, а другой сорт — b; необходимо рассмотреть разные комбинации сил! Существует взаимодействие а—b, которое старается направить спины атома а и атома bпротиво­положно, ибо квантовая механика всегда требует, чтобы спи­ны были противоположны (за исключением таинственных кри­сталлов железа, никеля и кобальта). Затем существует взаимо­действие а—а, которое старается направить противоположно спины атомов а; кроме того, есть еще взаимодействие b—b,ко­торое старается направить противоположно спины атомов b. Конечно, сделать все противоположным всему (а противополож­но b и а противоположно а и b противоположно b ) невозможно. По-видимому, благодаря удаленности атомов а и присутствию атомов кислорода (с достоверностью мы не знаем, почему) ока­зывается, что взаимодействие а—b сильнее взаимодействий а—а и b—b. Словом, природа в этом случае воспользовалась ре­шением, в котором спины всех атомов b параллельны друг другу, а все атомы а тоже параллельны друг другу, но между собой эти две системы спинов противоположны. Такой распорядок благо­даря более сильному взаимодействию а—b соответствует наи­низшей энергии. В результате спины всех атомов а направлены вверх, а спины всех атомов b — вниз (может быть, конечно, и наоборот). Но если магнитные моменты атомов а и атомов b не равны друг другу, то создается картина, показанная на фиг. 37.13, в: материал может оказаться спонтанно намагни­ченным. При этом он будет ферромагнетиком, хотя и несколько слабее настоящего. Такие материалы называются ферритами. У них по очевидным причинам намагниченность насыщения не столь велика, как у железа, поэтому они полезны только при слабых магнитных полях. Но они обладают очень важным пре­имуществом — это изоляторы, т. е. ферриты являются ферро­магнитными изоляторами. Вихревые токи, создаваемые в них высокочастотными полями, очень малы, поэтому ферриты мож­но использовать, скажем, в микроволновых системах. Микро­волновые поля способны проникать внутрь таких непроводя­щих материалов, тогда как в проводниках типа железа этому препятствуют вихревые токи.

Существует еще один вид магнитных материалов, открытых совсем недавно,— это члены семейства со структурой ортосиликатов, называемых гранатами. Это тоже кристаллы, в ре­шетке которых содержатся два сорта металлических атомов; здесь мы снова сталкиваемся с ситуацией, когда оба сорта ато­мов можно заменять почти по желанию. Среди множества ин­тересующих нас составов есть один, который обладает ферромаг­нетизмом. В структуре граната он содержит атомы иттрия и железа и причина его ферромагнетизма весьма любопытна. Здесь снова по квантовой механике соседние спины противо­положны, так что это опять замкнутая система спинов, в ко­торой электронные спины ионов железа направлены в одну сторону, а электронные спины ионов иттрия — в противопо­ложную. Но атомы иттрия очень сложны. В их магнитный мо­мент большой вклад вносит орбитальное движение электронов. Вклад орбитального движения для иттрия противоположен вкладу спина, и, кроме того, он больше его. Таким образом, хотя квантовая механика, опираясь на свой принцип запрета, стремится направить спины ионов иттрия противоположно спинам ионов железа, результирующий магнитный момент ит­трия в результате орбитального эффекта оказывается парал­лельным спинам ионов железа. И соединение работает как на­стоящий ферромагнетик.

Другой интересный пример ферромагнетизма дают некото­рые редкоземельные элементы. Здесь мы встречаемся с еще боль­шими странностями в расположении спинов. Эти металлы не ферромагнетики в том смысле, что все спины в них параллель­ны, и не антиферромагнетики в том смысле, что спины сосед­них атомов противоположны. В этих кристаллах все спины в одном слое параллельны и лежат в плоскости слоя. В следую­щем слое все спины снова параллельны друг другу, но смотрят уже в несколько ином направлении. В следующем слое они тоже направлены в другую сторону и т. д. В результате вектор локального намагничивания (в слоях) меняется по спирали: магнитные моменты последовательных слоев поворачиваются при движении вокруг линии, перпендикулярной слоям. Инте­ресно попытаться проанализировать, что получается, когда к такой спирали прилагается поле, найти все скручивания и повороты, которые должны происходить со всеми этими атом­ными магнитиками. (Некоторые люди просто увлечены теориями подобных вещей!) В природе встречаются не только «плоские» спирали, но существуют еще случаи, когда направления маг­нитных моментов последовательных слоев образуют конус, так что у них есть не только спиральная компонента, но и одно­родная ферромагнитная компонента в том же направлении!

Магнитные свойства материалов на более высоком уровне, чем занимались мы с вами, очаровывают многих физиков. Пре­жде всего этим увлекаются люди практического склада, кото­рые любят придумывать способы улучшать разные вещи; им нравится изобретать более совершенные и интересные магнит­ные материалы. Открытие таких материалов, как ферриты, или их применение немедленно привело в восторг тех, кто выиски­вает новые хитрые пути сделать вещи совершеннее. Но есть еще люди, которые находят очарование в той ужасной сложности, которую природа создает на основе лишь нескольких фунда­ментальных законов. На основе одной и той же общей идеи природа от ферромагнетизма железа и его доменов дошла до антиферромагнетизма хрома, магнетизма ферритов и гранатов, до спиральной структуры редкоземельных элементов и шагает все дальше и дальше. До чего же приятно экспериментально открывать все эти странные явления, упрятанные в подобных особых веществах! А физикам-теоретикам ферромагнетизм по­дарил целый ряд интереснейших еще не решенных красивых проблем. Одна из них: почему вообще существует ферромагне­тизм? Другая — вывести статистику взаимодействующих спи­нов в идеальной решетке. Даже если пренебречь дополнитель­ными усложнениями, эти проблемы до сих пор не поддаются полному пониманию. Причина, по которой они так интересны,— удивительная простота постановки задачи: в правильной ре­шетке задано множество электронных спинов, взаимодействую­щих по такому-то и такому-то закону; что с ними в конце концов происходит? Поставить-то задачу было легко, а вот пол­ному анализу она не поддавалась многие годы. И хотя для тем­ператур, не слишком близких к точке Кюри, она была проана­лизирована довольно тщательно, теория внезапного перехода в точке Кюри до сих пор еще ждет своего решения.

Наконец, задача о поведении систем атомных магнитиков: и ферромагнетизм, и парамагнетизм, и ядерный магнетизм — исключительно полезные вещи для студентов-физиков старших курсов. Внешним магнитным полем на систему спинов можно воздействовать и так и сяк, поэтому можно придумать множе­ство фокусов с резонансами, процессами релаксации, спиновым эхом и другими эффектами. Эта задача служит прототипом мно­гих сложных термодинамических систем, с тем преимуществом, что в парамагнитных материалах положение обычно гораздо проще и исследователи с удовольствием ставят здесь экспери­менты и объясняют явления теоретически.

Мы заканчиваем наше изучение электричества и магнетизма. В гл. 1 (вып. 5) мы говорили о великом пути, пройденном со времен, когда древние греки наблюдали странное поведение янтаря и магнитного железняка. Но еще нигде в наших длин­ных и запутанных рассуждениях мы не объяснили, почему, когда мы натираем кусок янтаря, на нем возникает заряд, не объяснили мы и того, почему намагничен природный магнит­ный железняк! Вы можете возразить: «Нам просто не удалось получить правильного знака». Нет, дело обстоит гораздо хуже. Если бы мы все-таки получили правильный знак, по-прежнему остался бы вопрос: почему кусок магнитного железняка в земле оказался намагниченным? Конечно, существует магнитное поле Земли, но откуда взялось это магнитное поле Земли? Вот это­го-то на самом деле никто и не знает, и приходится довольство­ваться только некоторыми правдоподобными догадками. Так что, как видите, наша хваленая современная физика — сплош­ное надувательство: начали мы с магнитного железняка и ян­таря, а закончили тем, что не понимаем достаточно хорошо ни того, ни другого. Зато в процессе изучения мы узнали огромное количество удивительных и очень полезных для практики вещей!

 

 

Вас может удивить, каким образом спины, которые должны быть направлены либо «вверх», либо «вниз», могут также быть направлены «вбок»! Это, конечно, правильно, но мне, право, не хотелось бы останавли­ваться на этом вопросе сейчас. Мы просто встанем на классическую точку зрения, представив себе атомные магнитики в виде магнитных диполей, ко­торые могут быть ориентированы и в боковом направлении. Чтобы понять, как в квантовой механике можно в одно и то же время квантовать как «вверх—вниз», так и «направо — налево», требуется поднакопить больше знаний.

* Вместо В мы записали это уравнение через H=B-M/e0c2, чтобы согласовать со сказанным в предыдущей главе. Если вам больше нравится, можете написать U=±|m|Ba=±|m|(В+l'M/e0с2), где l'=l-1. Это одно и то же.

Литература: Ch. Кittel, Introduction to Solid State Physics, 2nd ed., New York, 1956. (Имеется пере­вод: Ч. Киттель, Введение в физику твердого тела, Физматгиз, М., 1962.— Ред.)


 


Дата добавления: 2015-08-20; просмотров: 68 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Ферромагнитные материалы| Закон Гука

mybiblioteka.su - 2015-2024 год. (0.008 сек.)