Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Ферромагнитные материалы

Парамагнетизм | Охлаждение адиабатическим размагничиванием | Ядерный магнитный резонанс | Токи намагничивания | Кривая намагничивания | Индуктивность с железным сердечником | Электромагниты | Спонтанная намагниченность | Сущность ферромагнетизма | Термодинамические свойства |


Читайте также:
  1. II. Материалы и методы
  2. II. Природные каменные материалы
  3. VI. Контрольно-измерительные материалы
  4. Аттестационные материалы
  5. Виды гидроизоляции, применяемые материалы
  6. Виды подвесных потолков, материалы, используемые для их выполнения.
  7. Восковые моделировочные материалы.

Сейчас было бы хорошо рассказать о различных сортах маг­нитных материалов, применяемых в технике, и о некоторых проблемах, связанных с созданием магнитных материалов для разных целей. Прежде всего о самом термине «магнитные свой­ства железа», который часто приходится слышать. Он, строго говоря, не имеет смысла и способен ввести в заблуждение: «же­лезо» как строго определенный материал не существует. Свой­ства железа существенно зависят от количества примесей, а также от способа его приготовления. Вы понимаете, что магнит­ные свойства будут зависеть от того, насколько легко движутся доменные стенки, именно это свойство будет определяющим, а совсем не то, как ведут себя отдельные атомы. Так что практи­чески ферромагнетизм не является свойством атомов железа: это свойство куска железа в определенном состоянии. Железо, например, может находиться в двух различных кристаллических формах. Обычная форма имеет объемноцентрированную куби­ческую решетку, но может еще иметь и гранецентрированную решетку, которая, однако, стабильна только при температурах выше 1100°С. При этих температурах, разумеется, железо уже прошло точку Кюри. Однако, сплавляя с железом хром и ни­кель (один из возможных составов содержит 18% хрома и 8% никеля), мы можем получить то, что называется нержавеющей сталью; хотя она и состоит главным образом из железа, но сох­раняет гранецентрированную решетку даже при низких тем­пературах. Благодаря своей кристаллической структуре этот материал обладает совершенно другими магнитными свойст­вами. Обычно нержавеющая сталь немагнитна в сколько-нибудь заметной степени, хотя есть сорта с другим составом сплава, которые в какой-то степени магнитны. Хотя такой сплав, как любое вещество, является магнетиком, он не ферро магнетик, как обычное железо, несмотря на то, что в основном он все же состоит из железа.

Существуют специальные материалы, которые были приду­маны для получения особых магнитных свойств. О некоторых из них я хочу рассказать. Если нужно сделать постоянный магнит, то требуется найти материал с необычно широкой пет­лей гистерезиса, чтобы при выключении тока, когда мы спу­стимся к нулевому намагничивающему полю, намагниченность все же осталась большой. Для таких материалов границы до­менов должны быть «заморожены» на месте как можно крепче. Одним из таких материалов является замечательный сплав АлникоV (51% Fe, 8% Аl, 14% Ni, 24% Со, 3% Cu). Доволь­но сложный состав этого сплава говорит о том кропотливом труде, который надо было затратить, чтоб создать хороший магнит. Сколько терпения потребовалось для того, чтобы, смешивая по-разному пять компонент, проверять раз­ные составы их до тех пор, пока не был найден идеальный сплав! Когда АлникоV затвердевает, у него появляется «вторая фаза», которая, осаждаясь, образует множество ма­леньких зерен и вызывает очень большие внутренние напряжения. Движение доменных стенок в этом материале очень затруднено. А чтобы получить вдобавок нужное строение, Алнико V механически «обрабаты­вается» так, чтобы кристаллы выстраивались в форме продол­говатых зерен в направлении будущей намагниченности. При этом намагниченность, естественно, стремится смотреть в нуж­ном направлении и противостоять эффектам анизотропии. Бо­лее того, в процессе приготовления материал даже охлаждается во внешнем магнитном поле, так что зерна растут с правильной ориентацией кристаллов. Петля гистерезиса АлникоV приве­дена на фиг. 37.12.

 

 

Фиг. 37.12. Петля гистере­зиса сплава АлникоV.

 

Видите, она в 500 раз шире петли гистерезиса мягкого железа, которую я вам показывал (см.фиг.36.8, стр.146). Обратимся теперь к другим сортам материалов. Для изготов­ления трансформаторов и моторов необходим материал, который был бы «мягким» в магнитном отношении, т. е. такой, намагни­ченность которого могла бы легко изменяться, так что даже очень малое приложенное поле приводило бы к очень большой намагниченности. Для этого нужны чистые, хорошо отожжен­ные материалы с очень малым количеством дислокаций и при­месей, так чтобы доменные стенки могли легко двигаться. Ани­зотропию желательно сделать как можно меньше. Тогда если даже зерна материала расположены под «неправильным» углом по отношению к полю, материал все равно будет легко намаг­ничиваться. Мы говорили, что железо предпочитает намагничи­ваться в направлении [100], тогда как никель предпочитает направление [111], так что если мы будем в различных пропор­циях смешивать железо и никель, то можно надеяться найти такую их пропорцию, когда сплав не будет иметь никакого предпочтительного направления, т. е. направления [100] и [111] будут эквивалентны. Оказывается, что это достигается при смешивании 70% никеля и 30% железа. Вдобавок (вероят­но, по счастливой случайности, а быть может, по какой-то фи­зической взаимосвязи между анизотропией и магнитострикционными эффектами) оказалось, что константы магнитострик­ции железа и никеля имеют противоположные знаки. Для сплава этих двух металлов магнитострикция исчезает при со­держании никеля около 80%. Так что при содержании никеля где-то между 70 и 80% у нас получаются очень «мягкие» маг­нитные материалы — сплавы, которые очень легко намагничи­ваются. Они называются пермаллоями. Пермаллои используют­ся в высококачественных трансформаторах (при низких уров­нях сигналов), но совершенно не годятся для постоянных маг­нитов. Приготовлять пермаллои и работать с ними нужно очень осторожно. Магнитные свойства пермаллоя в корне меняются, если его деформировать выше предела его упругости, так что этот материал никоим образом нельзя сгибать. Иначе в резуль­тате возникновения дислокаций, поверхностей скольжения и других механических деформаций проницаемость его умень­шается и границы доменов уже будут двигаться не так легко. Впрочем, былую высокую проницаемость можно восстановить отжигом при высокой температуре.

Полезно для характеристики различных магнитных мате­риалов оперировать какими-то числами. Двумя такими харак­теристиками являются значения В и Н в точках пересече­ния петли гистерезиса с осями координат (фиг. 37.12). Эти значения называются остаточным магнитным полем Вr и коэрцитивной силой Нс. В табл. 37.1 приведены эти характе­ристики для некоторых материалов.


Дата добавления: 2015-08-20; просмотров: 75 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Петля гистерезиса| Необычные магнитные материалы

mybiblioteka.su - 2015-2024 год. (0.006 сек.)