Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Продольный изгиб

Спонтанная намагниченность | Сущность ферромагнетизма | Термодинамические свойства | Петля гистерезиса | Ферромагнитные материалы | Необычные магнитные материалы | Закон Гука | Однородная деформация | Кручение стержня; волны сдвига | Собирая теперь все воедино, находим |


Читайте также:
  1. А) Проверка прочности обрешетки по нормальным напряжениям при косом изгибе (по I группе предельных состояний).
  2. а) Проверка прочности стропилл по нормальным напряжениям при изгибе (по I группе предельных состояний).
  3. Датчики изгиба
  4. Изгибание балки
  5. Изгибающие моменты и поперечные силы от ползучести бетона Мсr, Qсr, усадки бетона Мshr, Qshr, неравномерного температурного воздействия Мt, Qt.
  6. Испытание на изгиб
  7. Исследование прочности конструкции на деформацию изгиба

Теперь воспользуемся нашей теорией, чтобы понять, что про­исходит при продольном изгибе бруска, опоры или стержня. Рассмотрим то, что изображено на фиг. 38.16.

 

Фиг. 38.16. Продольно изогну­тая балка.

 

Здесь стержень, обычно прямой, удерживается в согнутом виде двумя проти­воположными силами, давящими на его концы. Найдем форму стержня и величину сил, действующих на концы.

Пусть отклонение стержня от прямой линии между концами будет у(х), где х — расстояние от одного конца. Изгибающий момент в точке Р на рисунке равен силе F, умноженной на плечо, перпендикулярное направлению у:

Воспользовавшись выражением для момента (38.36), имеем

При малых отклонениях можно считать 1 /R=-d2y/dx2 (от­рицательный знак выбран потому, что кривизна направлена вниз). Отсюда

 

т. е. появилось дифференциальное уравнение для синуса. Таким образом, для малых отклонений кривая такого про­дольно изогнутого стержня представляет синусоиду. «Длина волны» l. этой синусоиды в два раза больше расстояния L между концами. Если изгиб невелик, она просто равна уд­военной длине неизогнутого стержня. Таким образом, получается кривая

Беря вторую производную, находим

Сравнивая это с (38.45), видим, что сила равна

Для малого продольного изгиба сила не зависит от перемеще­ния у!

Физически же получается вот что. Если сила F меньше опре­деляемой уравнением (38.46), то никакого продольного изгиба не происходит. Но если она хоть немного больше этой силы, то балка внезапно и очень сильно согнется, т. е. под действием сил, превышающих критическую величину p 2YI/L2 (часто назы­ваемую «силой Эйлера»), балка будет «гнуться». Если на вто­ром этаже здания разместить такой груз, что нагрузка на под­держивающие колонны превысит силу Эйлера, то здание рух­нет. Другая область, где очень важны продольно изгибающие силы,— это космические ракеты. С одной стороны, ракета дол­жна выдерживать свой вес на стартовой площадке и вынести напряжения во время ускорения, а с другой — очень важно свести вес всей конструкции до минимума, чтобы полезная на­грузка и полезная мощность двигателей были как можно больше.

Фактически превышение силы Эйлера вовсе не означает, что после этого балка полностью разрушится. Когда отклонение ста­новится большим, сила благодаря члену (dz/dx)2 в уравнении (38.38), которым мы пренебрегли, будет на самом деле больше вычисленной. Чтобы найти силы при большом продольном изги­бании стержня, мы должны вернуться к точному уравнению (38.44), которое получалось до использования приближенной связи между R и y.

Уравнение (38.44) имеет довольно простые геометрические свойства. Решается оно немного сложнее, но зато гораздо интереснее. Вмес­то того чтобы описывать кривую через х и у, можно воспользовать­ся двумя новыми переменными:

S — расстоянием вдоль кривой и

q— наклоном касательной к кри­вой (фиг. 38.17.)

 

Фиг. 38.17. Координа­ты кривой продольно изогнутой балки S и q.

 

Тогда кривизна будет равна скорости изменения угла с расстоянием

 

Поэтому точное уравнение (38.44) можно записать в виде

После взятия производной этого уравнения по S и замены dy/dS на sinq получим

[Если углы q малы, то мы снова приходим к уравнению (38.45), стало быть здесь все в порядке.

Не знаю, можете ли вы еще удивляться, но уравнение (38.47) получилось в точности таким же, как и для колебаний маятника с большой амплитудой (разумеется, с заменой F/YI другой постоянной). Еще раньше, в гл. 9 (вып. 1), мы узнали, как нахо­дить решение такого уравнения численным методом. В ответе вы получите очаровательную кривую. На фиг. 38.18 показаны три кривые для разных значений постоянной F/YI.

 

Кстати, точно такое же уравнение возникает и в других физических ситуациях: например, в мениске на поверхности жидкости, заключенной между двумя параллельными стенками, а поэтому можно воспользоваться тем же самым геометрическим рассмотрением.


Дата добавления: 2015-08-20; просмотров: 62 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Изгибание балки| Тензор деформации

mybiblioteka.su - 2015-2024 год. (0.009 сек.)