Читайте также: |
|
Указанное направление численного моделирования сочетает в себе в определенных чертах преимущества лагранжева и эйлерова подходов. Область решения здесь разбивается неподвижной (эйлеровой) сеткой; однако сплошная среда трактуется дискретной моделью – рассматривается совокупность частиц фиксированной массы (лагранжева сетка частиц), которые и перемещаются через эйлерову сетку ячеек. Частицы служат для определения параметров самой жидкости (массы, энергии, скорости), в то время как эйлерова сетка используется для определения параметров поля течения (давления, плотности, температуры).
Метод частиц в ячейках позволяет исследовать сложные явления в динамике многокомпонентных сред, взаимодействия разрывов, поскольку частицы хорошо «следят» за свободными поверхностями и линиями раздела сред. Однако дискретный метод частиц обладает и рядом недостатков. Главный из них, лежащий в самой природе метода, состоит в том, что из-за дискретного представления сплошной среды (конечное число частиц в ячейке) методу присуща вычислительная неустойчивость (флуктуации). Затруднительно также получение информации для сильно разреженных областей, откуда практически уходят все частицы, и т. п.
Дата добавления: 2015-08-03; просмотров: 86 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Численные методы в механике сплошных идеальных сред | | | Метод конечных элементов |