Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Решение. Найдем общее решение соответствующего однородного ДУ:

Задача 3. Дифференциальные уравнения с разделяющимися переменными. Найти общее решение. | РАБОТЫ №3 | Общие понятия и положения теории дифференциальных уравнений. | ОДУ первого порядка с разделяющимися переменными. | Однородные ДУ | Линейные ДУ первого порядка. | Уравнения Бернулли. | ДУ, допускающие понижение порядка. | Однородные (ЛОДУ). | Решение. |


Читайте также:
  1. Будь любезен, подумай хорошо, прежде чем принимать решение. Я не намерен терпеть твои перепады настроения и все такое. У меня, в конце концов, может не выдержать сердце.
  2. Глава 21. Решение.
  3. Задача 3. Дифференциальные уравнения с разделяющимися переменными. Найти общее решение.
  4. И тогда, Мудрейший отец, глава клана, принял решение. Он решил отправиться туда, где еще сохранились чистокровные фаэны. В Атлантиду.
  5. Принимаем осознанное решение.
  6. Решение.
  7. Решение.

а)

Найдем общее решение соответствующего однородного ДУ:

Характеристическое уравнение:

Поскольку и то общее решение запишем в виде (17), при этом учтем, что

Найдем частное решение неоднородного уравнения. Правая часть уравнения

Сравнивая ее с видом (20) заключаем, что Определим параметры частного решения (21). Учитывая, что а получим, что не является корнем характеристического уравнения, поскольку корни Следовательно, k = 0. Найдем Следовательно, порядок многочленов R и S равен 0, т. е. R 0 = A, а S 0 = B, где А и В — некоторые неизвестные пока коэффициенты. Подставив полученные параметры в имеем:

Коэффициенты А и В определим из условия, что функция у чн — решение уравнения и поэтому должна ему удовлетворять. Найдем и

и подставим в исходное уравнение:

Приравняем коэффициенты при и в правой и левой частях полученного равенства:

Итак,

Тогда согласно (19) общее решение неоднородного ДУ имеет вид:

б)

Найдем общее решение соответствующего однородного ДУ:

Характеристическое уравнение:

Найдем его корни по формуле (17):

Поскольку и то общее решение запишем в виде (17):

Найдем частное решение неоднородного уравнения. Правая часть уравнения Сравнивая ее с видом (20) заключаем Определим параметры частного решения (21). Учитывая, что а получим, что однократный корень характеристического уравнения, поскольку корни Следовательно, k = 1. Найдем Следовательно, порядок многочленов R и S равен 1, т. е. а где А, В, С, D — неизвестные коэффициенты. Подставляя полученные параметры в имеем:

Для определения коэффициентов А и В найдем и

и подставим в исходное уравнение:

Разделим обе части уравнения на и приведем подобные члены:

Приравняем коэффициенты при одинаковых степенях х в правой и левой частях уравнения:

Итак,

Тогда согласно (19) общее решение неоднородного ДУ имеет вид:

 

Литература.

1. Н.С. Пискунов, Дифференциальное и интегральное исчисление. Том 1,2. 1972-2000.

2. А.Ф. Бермант, И.Г. Араманович. Краткий курс математического анализа для втузов. Москва: “Наука”. Главная редакция физико-математической литературы, 1973.

3. Г.М. Берман, Сборник задач по курсу математического анализа (для втузов). Москва: “Наука”. 1985.

4. П. Е. Данко, и др. Высшая математика в упражнениях и задачах: Учебное пособие для втузов. В 2-х ч. 1980 – ч.1, 1984 – ч.2.

 

 


Дата добавления: 2015-07-25; просмотров: 107 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Линейные неоднородные дифференциальные уравнения (ЛНДУ).| Степенные ряды.

mybiblioteka.su - 2015-2024 год. (0.008 сек.)