Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Решение. а) Составим характеристическое уравнение:

Неопределенный интеграл. | Частные решения ЛНДУ специального типа. Метод вариации произвольных постоянных. | Задача 3. Дифференциальные уравнения с разделяющимися переменными. Найти общее решение. | РАБОТЫ №3 | Общие понятия и положения теории дифференциальных уравнений. | ОДУ первого порядка с разделяющимися переменными. | Однородные ДУ | Линейные ДУ первого порядка. | Уравнения Бернулли. | ДУ, допускающие понижение порядка. |


Читайте также:
  1. Будь любезен, подумай хорошо, прежде чем принимать решение. Я не намерен терпеть твои перепады настроения и все такое. У меня, в конце концов, может не выдержать сердце.
  2. Глава 21. Решение.
  3. Задача 3. Дифференциальные уравнения с разделяющимися переменными. Найти общее решение.
  4. И тогда, Мудрейший отец, глава клана, принял решение. Он решил отправиться туда, где еще сохранились чистокровные фаэны. В Атлантиду.
  5. Принимаем осознанное решение.
  6. Решение.
  7. Решение.

а) Составим характеристическое уравнение:

Решим его, используя формулу корней квадратного уравнения:

Получим корни:

Поскольку и то общее решение запишем в виде (14):

б)

Характеристическое уравнение:

его корни найдем по формуле корней квадратного уравнения:

Поскольку то общее решение запишем в виде (15):

в)

Характеристическое уравнение:

его корни найдем по формуле корней квадратного уравнения:

Получим комплексно сопряженные корни где а =1, b =4.

Решение запишем в виде (16):

г)

Характеристическое уравнение:

Решим его:

— комплексно сопряженные корни вида где а = 0, b = 1,3. Решение запишем в виде (16), при этом учтем, что


Дата добавления: 2015-07-25; просмотров: 46 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Однородные (ЛОДУ).| Линейные неоднородные дифференциальные уравнения (ЛНДУ).

mybiblioteka.su - 2015-2024 год. (0.006 сек.)