Читайте также:
|
|
Для приведения уравнения кривой второго порядка к каноническому виду применяют метод выделения полного квадрата.
Сгруппируем слагаемые, содержащие текущие координаты. Коэффициенты при и вынесем за скобки: .
Выделим полный квадрат: . Отсюда . Разделим обе части равенства на 25: . Запишем полученное уравнение в каноническом виде: .
Выполним параллельный перенос осей координат по формулам . При таком преобразовании начало координат переносится в точку , уравнение эллипса принимает канонический вид .
В нашем примере , , , .
Итак, рассматриваемое уравнение определяет эллипс с центром в точке и полуосями и .
Рис. 13
Пример 2. Привести уравнение кривой второго порядка к каноническому виду и построить кривую.
Дата добавления: 2015-07-25; просмотров: 119 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Задача №3. | | | Решение. |