Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Решение. Канонические уравнения прямой имеют вид

Задача №1. | Решение. | Решение. | Решение. | Решение. | Решение. | Решение. | Решение. | Решение. | Задача №3. |


Читайте также:
  1. Будь любезен, подумай хорошо, прежде чем принимать решение. Я не намерен терпеть твои перепады настроения и все такое. У меня, в конце концов, может не выдержать сердце.
  2. Глава 21. Решение.
  3. Задача 3. Дифференциальные уравнения с разделяющимися переменными. Найти общее решение.
  4. И тогда, Мудрейший отец, глава клана, принял решение. Он решил отправиться туда, где еще сохранились чистокровные фаэны. В Атлантиду.
  5. Принимаем осознанное решение.
  6. Решение.
  7. Решение.

Канонические уравнения прямой имеют вид . Здесь - координаты точки, через которую проходит прямая.

В канонические уравнения прямой подставим координаты точки . Получим: .

Условие параллельности прямых и имеет вид

(3.12)

Так как прямые и параллельны, то в качестве направляющего вектора прямой можно взять направляющий вектор прямой , т.е. в формуле (3.12) отношение можно принять равным единице. Следовательно, уравнение прямой примет вид .

10) Найти угол между прямой : и плоскостью : .


Дата добавления: 2015-07-25; просмотров: 48 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Решение.| Решение.

mybiblioteka.su - 2015-2024 год. (0.006 сек.)