Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Производные показательной и степенной функций



Читайте также:
  1. II. Описание трудовых функций, входящих в профессиональный стандарт
  2. Адаптация. Коррекция и компенсация функций
  3. АЛГЕБРАИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ЛОГИЧЕСКИХ ФУНКЦИЙ
  4. В.1.Предел и непрерывность функции одной и нескольких переменных. Свойства функций, непрерывных на отрезке.
  5. В.5. Функциональные ряды. Равномерная сходимость. Признак Вейерштрасса. Непрерывность суммы равномерно сходящегося ряда непрерывных функций.
  6. В.9. Ряд Фурье по ортогональной системе функций. Неравенство Бесселя, равенство Парсеваля, сходимость ряда Фурье.
  7. Вспомните значение следующих глаголов и подберите к ним производные. Например: to calculate — calculating, calculator, calculation.

Теорема 7. Степенная функция y = x a(aÎR) дифференцируема при любом x ÎR и справедлива формула:

(x a)' = a × x a-1.

Доказательство. Прологарифмируем равенство y = x a, предполагая x >0:

ln y = a× ln x

Получили уравнение от x и y, задающее функцию y = x a неявно. Найдем производные от обеих частей равенства:

Выразим отсюда y ':

Подставим в полученное равенство y = x a:

Теорема доказана.

 

Теорема 8. Показательная функция y = ax (a >0, a #1) дифференцируема при любом x ÎR и справедлива формула:

(ax)' = ax × ln a

Доказательство. Прологарифмируем равенство y = ax:

ln y = x ln a.

Получили уравнение от x и y, задающее функцию y = ax неявно. Найдем производные от обеих частей равенства:

Выразим отсюда y ': y ' = y × ln a.

Подставим в полученное равенство y = ax :

(ax)'= ax × ln a

Теорема доказана.

Замечание. В частном случае, при a = e полученная формула в теореме 8 принимает вид:

(ex)' = ex × ln e или (ex)' = ex.

Теорема 9. Если функции U (x) и V (x) дифференцируемы в точке x, то показательно-степенная функция y = (U (x)) V ( x ) дифференцируема в точке x и справедлива формула:

((U (x)) V (x))' = (U (x)) V (x) × V ' (x) ln U (x) + U ' (x) × V (x) ×(U (x)) V (x)-1.

Доказательство можно выполнить с помощью логарифмирования равенства y =(U (x)) V ( x ) по основанию e и дальнейшего дифференцирования обеих частей полученного равенства.

 


Дата добавления: 2015-07-10; просмотров: 118 | Нарушение авторских прав






mybiblioteka.su - 2015-2024 год. (0.007 сек.)