Читайте также: |
|
Определение 4. Функция y = f (x) называется возрастающей (убывающей) на промежутке (a; b), если для любых x 1 и x 2, принадлежащих этому промежутку, из условия x 2 > x 1 следует неравенство:
f (x 2) > f (x 1) (f (x 2) < f (x 1)).
Определение 5. Функция y = f (x) называется монотонной на промежутке (a; b), если она на этом промежутке является только возрастающей или только убывающей.
Теорема 2 (достаточные условия монотонности).
Если функция y = f (x) дифференцируема на промежутке (a; b) и f ’(x) > 0 (f ’(x) < 0) для любых x Î (a; b), то функция возрастает (убывает) на этом промежутке.
Доказательство. Возьмем любые два значения x 1 и x 2 из промежутка (a; b). Для определенности предположим, что x 2 > x 1.
На отрезке [ x 1; x 2] функция y = f (x) непрерывна и дифференцируема (из условия теоремы). Следовательно, она удовлетворяет теореме Лагранжа на [ x 1; x 2]. То есть существует хотя бы одна точка c Î (x 1; x 2), в которой выполняется равенство:
f (x 2) - f (x 1) = f ' (c) × (x 2 - x 1).
Если f ’(x)>0 для любых x Î(a; b), то f ' (c)>0. Поэтому f (x 2) - f (x 1)>0, то есть из условия x 2 > x 1 следует неравенство f (x 2) > f (x 1). А так как x 1 и x 2 любые значения из промежутка (a; b), то функция y = f (x) возрастает на этом промежутке.
Если f ’(x) < 0 для любых x Î (a; b), то f ’(c) < 0. Поэтому f (x 2) - f (x 1) < 0, то есть из условия x 2 > x 1 следует неравенство f (x 2) < f (x 1). А так как x 1 и x 2 любые значения из промежутка (a; b), то функция y = f (x) убывает на этом промежутке.
Теорема доказана.
Дата добавления: 2015-07-10; просмотров: 98 | Нарушение авторских прав