Читайте также:
|
|
На основании построенных эпюр определяем вид деформаций стержней.
Первый стержень работает на косой изгиб, так как изгибается в двух плоскостях моментами . Наибольшие нормальные напряжения возникают в сечении с наибольшими моментами . Условие прочности следует написать для точки, наиболее удаленной от нейтральной оси, в которой напряжения от обоих моментов будут одного знака.
Для определения знаков напряжений рассмотрим деформацию стержня. Так, под действием момента верхние волокна растягиваются, нижние сжимаются, под действием момента растягиваются правые, а сжимаются левые волокна. Полученные знаки напряжений указаны на рисунке.
Запишем условие прочности для опасных точек 2 и 4: .
Для нашего случая
По условию , тогда
Откуда .
Вычислим нормальные напряжения в точках:
,
откуда:
Построим эпюры напряжений по контуру сечения. Положительные напряжения откладываем от контура влево. На нейтральной оси нормальные напряжения равны нулю. По эпюрам σ можно определить нулевые точки на контуре сечения и через них провести нейтральную ось.
Касательные напряжения вычисляем по преобразованной формуле Журавского для максимальных напряжений в прямоугольном сечении отдельно от :
;
Суммарное касательное напряжение равно геометрической сумме этих напряжений, а наибольшее касательное напряжение будет в центре стержня:
Условие прочности выполняется.
Второй стержень работает на изгиб в двух плоскостях с кручением и растяжением. Поперечное сечение стержня круглое, поэтому изгиб будет плоским под действием результирующего момента:
.
При плоском изгибе нейтральная ось перпендикулярна результирующему моменту, поэтому её положение легко определяется.
В наиболее удаленных точках от нейтральной оси будут наибольшие нормальные напряжения изгиба . Наибольшие касательные напряжения при кручении будут на окружности стержня. Кроме того, под действием перерезывающей силы возникают касательные напряжения , достигающие максимума в центре стержня.
Эпюры распределения всех напряжений приведены на рисунке. Напряжения от перерезывающей и нормальной сил значительно меньше напряжений от изгибающего и крутящего моментов, поэтому опасными будут точки, наиболее удаленные от нейтральной оси точки А и Б. Здесь материал находится в условиях плоского напряженного состояния.
Условие прочности по IV теории прочности имеет вид:
при
где W – момент сопротивления относительно оси, Wp – полярный момент сопротивления.
При подборе сечения напряжениями от нормальной силы, ввиду их малой величины, можно пренебречь, тогда предварительное условие прочности примет вид:
,
отсюда
Вычислим нормальные и касательные напряжения.
Наибольшее нормальное напряжение от изгиба:
Наибольшее касательное напряжение при изгибе:
Наибольшее касательное напряжение при кручении:
Для окончательной проверки подставим вычисленные напряжения в условие прочности
условие прочности выполнено.
Третий стержень работает на изгиб в двух плоскостях с кручением и растяжением. Поперечное сечение стержня круглое, поэтому изгиб будет плоским под действием результирующего момента:
.
При плоском изгибе нейтральная ось перпендикулярна результирующему моменту, поэтому её положение легко определяется.
В наиболее удаленных точках от нейтральной оси будут наибольшие нормальные напряжения изгиба . Наибольшие касательные напряжения при кручении будут на окружности стержня. Кроме того, под действием перерезывающей силы возникают касательные напряжения , достигающие максимума в центре стержня, и от нормальной силы – равномерно распределенные по сечению нормальные напряжения .
Эпюры распределения всех напряжений приведены на рисунке. Напряжения от перерезывающей и нормальной сил значительно меньше напряжений от изгибающего и крутящего моментов, поэтому опасными будут точки, наиболее удаленные от нейтральной оси точки А и Б. Здесь материал находится в условиях плоского напряженного состояния.
Условие прочности по IV теории прочности имеет вид:
где W – момент сопротивления относительно оси, Wp – полярный момент сопротивления.
При подборе сечения напряжениями от нормальной силы, ввиду их малой величины, можно пренебречь, тогда предварительное условие прочности примет вид:
,
отсюда
Вычислим нормальные и касательные напряжения.
Наибольшее нормальное напряжение от изгиба:
Наибольшее касательное напряжение при изгибе:
Наибольшее касательное напряжение при кручении:
Нормальное напряжение от продольной силы:
Из расчетов видно, что действительно значительно меньше . Строго говоря, нормальная сила смещает нейтральную ось от центра тяжести сечения. Определить новое положение нейтральной оси можно графически по суммарной эпюре нормальных напряжений или вычислить аналитически.
Обозначим смещение нейтральной оси с центра тяжести через u. Нормальные напряжения на нейтральной оси равны нулю. Тогда уравнение примет вид:
отсюда .
Для окончательной проверки подставим вычисленные напряжения в условие прочности
условие прочности выполнено.
Дата добавления: 2015-10-16; просмотров: 107 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Расчет рамы испытывающей сложное сопротивление | | | ВЫБОР НАИБОЛЕЕ ЭКОНОМИЧНОГО ПРОФИЛЯ СЕЧЕНИЯ СТЕРЖНЯ |