Читайте также: |
|
Начнём первую часть предлагаемого пособия с нескольких цитат из предисловия В.А. Ус-пенского к книге Ю.А. Шихановича «Введение в современную математику» (см. список литера-туры в конце части).
«… Сейчас, как никогда, становится ясным, что математика – это не только совокупность фактов, изложенных в виде теорем, но прежде всего – арсенал методов, и даже ещё прежде того – язык для описания фактов и методов самых разных областей науки и практической деятель-ности. Именно этим обстоятельством и обусловливается универсальный характер применимос-ти математики …».
«Математические методы исследования неизбежно начинаются с – явного или неявного – уточнения языка. Причём главное в этом языке … – фундамент, язык начальных понятий. К их числу и относятся прежде всего … понятия “множество”, “кортеж”, “соответствие”, “фун-кция”, “отношение”». (В обеих цитатах разрядка В.А. Успенского).
К этим понятиям следует добавить – и даже поставить на первое место – понятие “выска-зывание”, как это и делается в вышеупомянутой книге Ю.А. Шихановича, В ней, как и во мно-гих других изданиях, включая классическую книгу Н. Бурбаки «Теория множеств» (см. список литературы в конце части), понятия высказывания, множества и кортежа считаются исходными и формально неопределяемыми. В то же время понятия графика, соответствия, функции, как и многие другие, будут формально определяться через эти исходные понятия. Именно иерархия основных понятий, связанная с определениями одних через другие, и задаёт порядок изложе-ния. Например, фраза «элемент x принадлежит множеству X» является высказыванием, и уже поэтому множества должны рассматриваться после высказываний, кортежи – после множеств, и т.д. Поэтому материал части 1 «Элементы математического языка» излагается в следующем порядке.
Понятие высказывания вводится и разъясняется (но формально не определяется просто потому, что это невозможно) в главе 1, понятие множества – в главе 2, понятие кортежа – в гла-ве 3. Конечно, вместе с этими понятиями в главах 1 – 3 вводятся и другие «сопутствующие» по-нятия – простого и составного высказывания, элемента, принадлежности и подмножества, ком-поненты кортежа и прямого (декартового) произведения множеств, и т.п. Формально определя-емые (с помощью уже введённых понятий) понятия графика, соответствия и функции также рассматриваются в главе 3. В главе 4 вводятся понятия высказывательной формы, переменной и кванторов. Завершает эту часть глава 5, посвящённая булевой алгебре и некоторым её прило-жениям. Булевы (логические) функции, вместе с введёнными в главе 4 кванторами и введённы-ми в главе 1 операциями над истинностными значениями высказываний, образуют исчисление высказываний – тот фундаментальный набор средств математического языка, которые позволя-ют дать короткие и единообразные формулировки теорем и определений практически из всех разделов математики.
Как и в других частях пособия, изложение сопровождается значительным числом приме-ров и стандартных заданий, опирающихся на эти примеры.
Дата добавления: 2015-10-16; просмотров: 93 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Глава 15. Бинарные отношения в критериальном пространстве | | | Понятие высказывания |