Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Пример. Топологии Ф1 и Ф2 несравнимы.

Читайте также:
  1. Ворота Оплаты 4. Пример.
  2. Другой пример.
  3. Космонавтов, приводил такой наглядный пример. Чемпион мира одолеет 100 метров за 10
  4. Пример.
  5. Пример.
  6. Пример.

Х = ,

Ф1 = {Æ, Х, },

Ф2 = {Æ, Х, }.

Топологии Ф1 и Ф2 несравнимы.

 

Теорема 1. Пересечение произвольного множества топологий, заданных на Х, является топологией в Х. Эта топология Ф слабее любой из данных топологий Ф .

Доказательство. Пусть .

Так как для любого a

{ Х, Æ} Ì Ф ,

то

{ X, Æ} Ì Ф.

Далее, из того, что каждое Ф замкнуто относительно взятия любых объединений и конечных пересечений, следует, что этим свойством обладает и множество .

Теорема 2. Пусть А – произвольная система подмножеств множества Х. Тогда существует минимальная топология в Х, содержащая А.

Действительно, всегда существуют топологии, содержащие А, например, дискретная. Пересечение всех топологий, содержащих А и есть искомая топология. Эта минимальная топология называется топологией, порождённой системой А.

 


Дата добавления: 2015-08-13; просмотров: 110 | Нарушение авторских прав


Читайте в этой же книге: ПРИМЕРЫ МЕТРИЧЕСКИХ ПРОСТРАНСТВ | Замкнутые множества | Внутренние, внешние и граничные точки | БАЗИС. АКСИОМЫ ОТДЕЛИМОСТИ | Аксиома Хаусдорфа | КОМПАКТНОСТЬ ТОПОЛОГИЧЕСКИХ ПРОСТРАНСТВ. СВЯЗНОСТЬ ТОПОЛОГИЧЕСКИХ ПРОСТРАНСТВ | Связность топологических пространств | Непрерывные отображения | Примеры непрерывных отображений | Топологические отображения |
<== предыдущая страница | следующая страница ==>
ПРОСТРАНСТВ| Понятие подпространства

mybiblioteka.su - 2015-2025 год. (0.006 сек.)