Читайте также:
|
|
Всякая игра предполагает следующее:
Наиболее изученным классом игр являются так называемые игры с нулевой суммой, когда в любой партии имеет место условие
,
то есть если кто-то выигрывает, то кто-то обязательно проигрывает. Это особенно проявляется в играх двух лиц с нулевой суммой, когда , то есть . В этом случае интересы игроков строго противоположны, так как выигрыш одного игрока является одновременно проигрышем другого. Такие игры называют антагонистическими.
Всякая игра состоит из партий, которые начинаются и заканчиваются, после чего игрокам выплачиваются их выигрыши. В свою очередь, каждая партия состоит из ходов, которые одновременно или последовательно делают игроки. Описание игры как последовательности ходов носит название позиционной формы игры. Теория игр в позиционной форме разработана очень слабо и ещё ждёт своих Эйлеров и Гауссов.
Основное содержание современной теории игр - это так называемая матричная форма игры. В этом случае считается, что каждый игрок делает всего лишь один ход, причем все ходы делаются одновременно. После этого каждому игроку выплачивается выигрыш (или берётся проигрыш) в зависимости от того, какие ходы были сделаны им и другими игроками.
Вообще говоря, игра в позиционной форме может быть сведена к игре в матричной форме, однако для реальных игр это сведение настолько сложно, что практически невыполнимо даже для современных ЭВМ. Однако вполне возможно, что в будущем такое сведение будет иметь и практический смысл.
Дата добавления: 2015-07-08; просмотров: 129 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Розрахунок сподіваної корисності ЗА директором | | | Игры двух лиц с нулевой суммой |