Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Математического ожидания.

Читайте также:
  1. Выбор математического пакета
  2. Для формулирования математического вида закона всемирного тяготения Ньютон использовал
  3. Доверительный интервал для оценки математического ожидания при известном s.
  4. Доверительный интервал для оценки математического ожидания при неизвестном s.
  5. Звезда Математического интеллекта
  6. КАФЕДРА МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ
  7. КАФЕДРА МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ

Законы распределения случайной величины являются исчерпывающими характеристиками. Каждый закон распределения представляет собой некоторую функцию, указание которой полностью описывает случайную величину с вероятностной точки зрения.

Однако часто закон распределения неизвестен и приходится ограничиваться меньшими сведениями; зачастую достаточно бывает только отдельные числовые параметры, характеризующие отдельные черты распределения; например, среднее значение или разброс случайной величины («степень случайности»). Такие числа называются числовыми характеристиками случайной величины.

Рассмотрим случайную величину Y, зависящую функционально от случайной величины X с известным законом распределения F (x): Y =φ(X).

Если Х – дискретная случайная величина и известен ее ряд распределения имеет вид:

Xi x1 x2 xn
pi p1 p2 pn

Определяем вероятности появления различных значений случайной величины У

 

φ(X)i φ(x1) φ(x2) φ(xn)
pi p1 p2 pn

 

Тогда математическое ожидание случайной величины Y определяется так:

(9.1)

Если случайная величина X непрерывна и имеет плотность распределения f(x), то заменяя в формуле (9.1) вероятности pi элементом вероятности f(x)dx, а сумму – интегралом, получаем:

. (9.2)

Для смешанной случайной величины выражение для математического ожидания преобразуется к виду:

(9.3)

Соотношения (9.1), (9.2) и (9.3) – общее понятие математического ожидания, позволяющее вычислить математическое ожидание для неслучайных функций случайного аргумента.

 


Дата добавления: 2015-07-10; просмотров: 158 | Нарушение авторских прав


Читайте в этой же книге: Случайные события и их классификация, операции над событиями. | Вероятность события. Классическое определение вероятности. | Теоремы сложения вероятностей. | Теоремы умножения вероятностей. | Формула полной вероятности. | Формула Байеса. | Теорема о повторении опытов. Формула Бернулли. | Локальная и интегральная теоремы Лапласа. | Функция распределения и ее свойства. | Дисперсия случайной величины и ее свойства. |
<== предыдущая страница | следующая страница ==>
Непрерывная случайная величина. Плотность распределения случайной величины и ее свойства.| Математическое ожидание случайной величины.

mybiblioteka.su - 2015-2024 год. (0.004 сек.)