Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Теоремы умножения вероятностей.

Читайте также:
  1. Аксиомы теории вероятностей. Дискретные пространства элементарных исходов. Классическое определение вероятности
  2. Алгоритм письменного умножения
  3. Взаимосвязь между результатами и компонентами действий умножения и деления
  4. Вычислить вероятности событий, используя классическое определение вероятности или теоремы вероятностей.
  5. История появления таблицы умножения.
  6. Как быстро выучить таблицу умножения?
  7. Как легко выучить таблицу умножения за 4 дня?

ошибка-пересечение (2.9)

Вероятность произведения (пересечения, совмещения) двух событий равна вероятности одного из них, умноженной на условную вероятность второго при наличии первого (правило умножения вероятностей).

Правило умножения вероятностей может быть обобщено на случай произвольного числа событий

(2.10)

т.е. вероятность произведения нескольких событий равна произведению вероятностей этих событий, причем вероятность каждого последующего события вычисляется при условии, что все предыдущие имели место.

 

Событие A называется независимым от события B, если его вероятность не зависит от того, произошло событие B или нет, т.е. P(B / A)=P(B).

Для независимых событий правило произведения вероятностей принимает вид:

.(2.11)

Несколько событий A1, A2, …, An называются независимыми, если любое из них не зависит от любой комбинации (произведения) любого числа других. Для независимых событий правило умножения принимает вид:

(2.12)

или

(2.13)

т.е. вероятность произведения нескольких независимых событий равна произведению вероятностей этих событий.

Заметим, что если имеется несколько событий A1, A2, …, An, то их попарная независимость (т.е. независимость любых двух событий Ai и Aj, i≠j) еще не означает их независимости в совокупности.


Дата добавления: 2015-07-10; просмотров: 330 | Нарушение авторских прав


Читайте в этой же книге: Случайные события и их классификация, операции над событиями. | Вероятность события. Классическое определение вероятности. | Формула Байеса. | Теорема о повторении опытов. Формула Бернулли. | Локальная и интегральная теоремы Лапласа. | Функция распределения и ее свойства. | Непрерывная случайная величина. Плотность распределения случайной величины и ее свойства. | Математического ожидания. | Математическое ожидание случайной величины. | Дисперсия случайной величины и ее свойства. |
<== предыдущая страница | следующая страница ==>
Теоремы сложения вероятностей.| Формула полной вероятности.

mybiblioteka.su - 2015-2024 год. (0.005 сек.)