Читайте также:
|
|
Математическое ожидание (МО) характеризует среднее взвешенное значение случайной величины.
Для вычисления математического ожидания для ДСВ каждое значение xi учитывается с «весом», пропорциональным вероятности этого значения.
(6.1)
M[X]- оператор математического ожидания;
mx -- число, полученное после вычислений по формуле.
Для НСВ заменим отдельные значения непрерывно изменяющимся параметром , соответствующие вероятности - элементом вероятности , а конечную сумму – интегралом: (6.2)
Механическая интерпретация понятия математического ожидания: на оси абсцисс расположены точки с абсциссами , в которых сосредоточены соответственно массы р1, р2,...., причем . Тогда МО – абсцисса центра тяжести. Для НСВ – масса распределена непрерывно с плотностью .
Для смешанных случайных величин математическое ожидание состоит из двух слагаемых.
, (6.3)
где сумма распространяется на все значения xi, имеющие отличные от нуля вероятности, а интеграл – на все участки оси абсцисс, где функция распределения F(x) непрерывна.
Физический смысл математического ожидания – это среднее значение случайной величины, т.е. то значение, которое может быть использовано вместо конкретного значения, принимаемого случайной величиной в приблизительных расчетах или оценках.
Дата добавления: 2015-07-10; просмотров: 172 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Математического ожидания. | | | Дисперсия случайной величины и ее свойства. |