Читайте также:
|
|
Пусть количественный признак генеральной совокупности распределен нормально. Известно среднее квадратическое отклонение этого распределения -s. Требуется оценить математическое ожидание а по выборочной средней. Найдем доверительный интервал, покрывающий а с надежностью g. Выборочную среднюю будем рассматривать как случайную величину (она изменяется от выборки к выборке), выборочные значения признака- как одинаково распределенные независимые СВ с математическим ожиданием каждой а и средним квадратическим отклонением s. Примем без доказательства, что если величина Х распределена нормально, то и выборочная средняя тоже распределена нормально с параметрами
.
Потребуем, чтобы выполнялось равенство
Заменив Х и s, получим
получим
Задача решена. Число t находят по таблице функции Лапласа Ф(х).
Пример1. СВХ распределена нормально и s =3. Найти доверительный интервал для оценки математического ожидания по выборочным средним, если n = 36 и задана надежность g =0,95.
Из соотношения 2Ф(t)= 0,95, откуда Ф(t) = 0,475 по таблице найдем t: t =1,96. Точность оценки
Доверительный интервал
.
Дата добавления: 2015-07-08; просмотров: 210 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Эмпирическая функция распределения. | | | Доверительный интервал для оценки математического ожидания при неизвестном s. |