Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Поле направлений Изоклины. Особые точки, особые решения ДУ с разделяющимися переменными.

Имеющие одной из перменных. | Всякая лин. Комбинация решений ЛОДУ является решением этого уравнения или системы. | Однородные ЛДУ и ЛОДУ и их системы. Пространсто их решений и его связь с арифметическим пространством, размерность. ФСР. Фундаметральная матрица. | Определение 1. | Следствие 4 | Системы ЛДУ с постянными коофицентами. | Уравнение Эйлера | Функция Коши. Ее построение по ФСР. | Часть доказательства. | Теорема о существовании непродолжаемого решения задачи Коши. |


Читайте также:
  1. V. Порядок обжалования действий (бездействия) должностного лица, а также принимаемого им решения при предоставлении муниципальной услуги
  2. Алгоритм решения задачи.
  3. Алгоритм решения изобретательских задач
  4. Алгоритм симплексного метода решения задач линейного программирования
  5. Архитектурно-строительные решения
  6. В общем, надо отличать конечное решение суда и решения, которые выносит суд касательно процессуальных действий сторон.
  7. В поисках подходящего решения

Если функция f(x,y0,y1…yn-1) в открытой области R^n+1 непрерывна и обладает в ней непрерывностью пусть

Дифференциа́льное уравне́ние — уравнение, связывающее значение производной функции с самой функцией, значениями независимой переменной, числами (параметрами).

Порядок, или степень дифференциального уравнения — наивысший порядок производных, входящих в него.

Решением (интегралом) дифференциального уравнения порядка n называется функция y (x), имеющая на некотором интервале(a, b) производные до порядка n включительно и удовлетворяющая этому уравнению. Процесс решения дифференциального уравнения называется интегрированием.

Решения дифференциальных уравнений подразделяются на общие и частные решения. Общие решения включают в себя неопределенные постоянные, После определения вида указанных постоянных и неопределенных функций решения становятся частными.

Зада́ча Коши́ — одна из основных задач теории дифференциальных уравнений (обыкновенных и с частными производными); состоит в нахождении решения (интеграла)дифференциального уравнения, удовлетворяющего так называемым начальным условиям (начальным данным).

Говорят, что задача Коши имеет единственное решение, если она имеет решение и никакое другое решение не отвечает интегральной кривой, которая в сколь угодно малой выколотой окрестности точки имеет поле направлений, совпадающее с полем направлений . Точка задаёт начальные условия.

 

Каательная к функции, скорость-производная производная от координаты по времени есть скорость

ИЗОКЛИНА

обыкновенного дифференциального уравнения 1-го порядка

- множество точек плоскости х, у, в к-рых наклон направлений поля, определяемого уравнением (*), один и тот же. Если к- произвольное действительное число, то k-изоклина уравнения (*) есть множество

Точки пересечения двух или нескольких изоклин могут быть особыми точками дифференциального уравнения (1), т.е. такими точками, в которых правая часть уравнения (1) не определена.


Дата добавления: 2015-09-01; просмотров: 57 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Теорема существования и единственности решения задачи Коши. Формулировка. Процесс Пикара. Доказательство его бесконечноти и непрерывности его элементов| ДУ 1 порядка, однородные и сводящиеся к ним, ДУ в полных дифференциалах.

mybiblioteka.su - 2015-2024 год. (0.006 сек.)