Читайте также: |
|
Свойство антисимметрии при перестановке двух строк (столбцов).
При перестановке двух строк (столбцов) матрицы ее определитель меняет знак на противоположный.
Доказательство. Допустим сначала, что переставлены две соседние строки матрицы: i и i+1. Разложим определитель исходной матрицы Δ по элементам i-й строки, а определитель новой матрицы Δ΄ - по элементам (i+1)-й строки. Разложения будут отличаться только знаком, т.к. в разложении определителя Δ΄ каждое алгебраической дополнение Ai+1j будет иметь противоположный знак (множители (-1)i+j сменятся на множители (-1)i+1+j). Т.о. Δ=-Δ΄.
Если переставить не соседние строки, а, например, i-ю и (i+m)-ю, то эту перестановку можно рассматривать как последовательное смещение i-й строки на m строк вниз (при этом каждый раз знак определителя меняется), а (i+m)-й строки на (m-1) вверх и (m-1) раз меняется знак, т.е. знак поменяется нечетное число раз: (m+m-1=2m-1). Следовательно, Δ =-Δ΄.
Для столбцов доказательство аналогично.
Линейное свойство определителя.
Некоторая строка а=(а1,а2,…,аn) называется линейной комбинацией строк b=(b1,b2,…,bn), c=(c1,c2,…,cn),…, d=(d1,d2,…,dn), с коэффициентами λ1,λ2,…,λk если она равна сумме произведений этих строк на эти числа:
a=λ1b+λ2c+…+λkd, т.е. aj=λ1bj+λ2cj+…+λkdj "j=1,2,…,n
Если в определителе n-го порядка D некоторая i-я строка (ai1,ai2,…,ain) является линейной комбинацией строк (bi1,bi2,…,bin) и (ci1,ci2,…,cin) с коэффициентами l и m, то D=lD1+mD2, где D1 – определитель, у которого i-я строка равна (bi1,bi2,…,bin), а все остальные строки такие же, как и у D, а где D2 – определитель, у которого i-я строка равна (сi1,сi2,…,сin), а все остальные строки такие же, как и у D.
= +
Доказательство. Разложим каждый из определителей D, D1, и D2 по i-й строке по формуле Δ=ai1Ai1+ai2Ai2+…+ainAin= . Заметим, что алгебраические дополнения Aij i-й у всех 3-х определителей одинаковы. Следовательно, формула D=lD1+mD2 следует из равенств aj=λbj+mcj "j=1,2,…,n ч.т.д.
Замечание. Линейное свойство справедливо и для случая, когда i-я строка является линейной комбинацией не 2-х, а нескольких строк.
Рассмотренные 3 свойства являются основными свойствами определителя. Следующие 5 свойств являются логическими следствиями этих свойств.
4. Определитель с двумя о динаковыми строками (столбцами), то равен 0.
Док-во. Переставим равные строки (столбцы) местами. С одной стороны, определитель не изменится, а с другой, по св-ву 2, поменяет знак. Т.е. Δ=-Δ, след-но, Δ=0.
Дата добавления: 2015-08-27; просмотров: 58 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Сам смогу бросить, мне не нужна помощь. | | | Если все элементы какой-либо строки (столбца) определителя умножить на число λ, то и определитель умножится на это число λ. |