Читайте также: |
|
Простейшим уравнением эллиптического типа является уравнение Лапласа: . Функция называется гармонической в конечной области D, если она в этой области имеет непрерывные производные до второго порядка и удовлетворяет уравнению Лапласа во всех точках D. Функция называется гармонической в бесконечной области D, если она в этой области имеет непрерывные производные до второго порядка, удовлетворяет уравнению Лапласа во всех точках D и равномерно стремится к нулю при стремлении точки в бесконечность (ф-ия при , если для заданного число А>0 такое что при , где r – расстояние точки М от начала координат).
Пусть - конечная область трехмерного пространства, ограниченная кусочно – гладкой ориентируемой поверхностью и пусть функции имеют внутри непрерывные и ограниченные производные первого порядка. Тогда имеет место формула Остроградского: (1), где n – внешняя нормаль к поверхности .
Выведем формулы Грина.
Пусть ф-ии и и их частные производные первого порядка непрерывны в вплоть до , частные производные второго порядка внутри непрерывны и ограничены. Полагая и пользуясь формулой (1) приходим к первой формуле Грина (2).
Меняя местами u и v в формуле (2) будем иметь (3).
Вычитая (2) из (3) получим вторую формулу Грина (4).
Лемма. Если функция непрерывна, имеет непрерывные производные первого и второго порядка везде в области , причем первые производные непрерывны вплоть до границы, а вторые производные непрерывны внутри области, то имеет место формула:
(5) где - расстояние от фиксированной точки лежащей внутри , до переменной точки , n – внешняя нормаль к поверхности .
Пусть гармоническая функция внутри конечной области - непрерывна вместе с производными первого порядка вплоть до границы области . Пусть известна ф-ия обладающая свойствами: 1) как функция переменной точки М она является гармонической внутри области и имеет непрерывные первые производные вплоть до поверхности ; 2) на поверхности ф-ия принимает граничные значения .
Функцией Грина задачи Дирихле для уравнения Лапласа называется ф-ия удовлетворяющая следующим условиям: 1) как функция точки М есть гармоническая внутри области исключая точку где она обращается в бесконечность; 2) она удовлетворяет граничному условию (6); 3) в области ф-ия допускает представление (7), где .
Построение ф-ии Грина сводится к нахождению ее регулярной части кот определяется из решения задачи Дирихле: ().
С помощью ф-ии Грина решение внутренней задачи Дирихле (если оно существует) дается формулой
Дата добавления: 2015-07-16; просмотров: 139 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Б.2 В.18 Постановка внешних и внутренних краевых задач для уравнения Лапласа. Условие разрешимости внутренней задачи Неймана. | | | Прямоугольная система координат. |