Читайте также: |
|
1. Пусть М = {á a, p, q ñ, á a, q, q ñ, á b, q, p ñ, á b, q, a ñ, á b, q, q ñ, á c, p, a ñ, á c, p, q ñ, á c, q, q ñ}. Найти проекцию ПР13 заданного множества М кортежей на оси с номерами 1 и 3.
2. Пусть М = {á a, p, q ñ, á a, q, q ñ, á b, p, q ñ, á b, q, a ñ, á b, q, q ñ, á c, p, a ñ, á c, p, q ñ, á c, b, q ñ}. Найти проекцию ПР12 заданного множества М кортежей на оси с номерами 1 и 2.
3. Пусть М = {á a, p, q ñ, á a, q, q ñ, á b, p, q ñ, á b, q, a ñ, á b, q, q ñ, á c, p, a ñ, á c, p, q ñ, á c, q, q ñ}. Найти проекцию ПР23 заданного множества М кортежей на оси с номерами 2 и3.
4. Пусть М = {á a, p, q ñ, á a, q, q ñ, á b, q, a ñ, á b, q, q ñ, á c, p, a ñ, á c, p, q ñ, á c, q, q ñ}. Найти проекцию ПР13 заданного множества М кортежей на оси с номерами 1 и 3.
5. Пусть М = {á a, p, q ñ, á a, q, q ñ, á b, p, q ñ, á b, q, a ñ, á b, q, q ñ, á c, p, a ñ, á c, q, q ñ}. Найти проекцию ПР12 заданного множества М кортежей на оси с номерами 1 и 2.
6. Пусть М = {á a, p, q ñ, á b, p, q ñ, á b, q, a ñ, á b, q, q ñ, á c, p, a ñ, á c, p, q ñ, á c, q, q ñ}. Найти проекцию ПР23 заданного множества М кортежей на оси с номерами 2 и3.
7. Пусть М = {á a, p, q ñ, á b, p, q ñ, á b, q, a ñ, á b, q, q ñ, á c, p, a ñ, á c, p, q ñ, á c, q, q ñ}. Найти проекцию
ПР12 заданного множества М кортежей на оси с номерами 1 и 2.
8. Пусть М = {á a, p, q ñ, á a, q, q ñ, á b, b, q ñ, á b, q, a ñ, á b, q, q ñ, á c, p, a ñ, á q, p, q ñ, á c, q, q ñ}. Найти проекцию ПР23 заданного множества М кортежей на оси с номерами 2 и3.
9. Пусть М = {á a, p, p ñ, á a, q, q ñ, á b, q, a ñ, á b, q, q ñ, á c, p, a ñ, á c, a, q ñ, á c, q, q ñ}. Найти проекцию ПР13 заданного множества М кортежей на оси с номерами 1 и 2.
10. Пусть М = {á a, p, q ñ, á a, q, q ñ, á b, p, q ñ, á q, q, a ñ, á b, q, q ñ, á c, p, a ñ, á c, c, q ñ}. Найти проекцию ПР12 заданного множества М кортежей на оси с номерами 1 и 3 ■
Пример 7. Пусть A и В – два произвольных множества, М = A × В. По определению опера-ций прямого произведения и проектирования имеем ПР1 М = A, ПР2 М = В. Поэтому можно ска-зать, что операции прямого произведения и проектирования являются взаимно-обратными (не уточняя этого понятия) ■
Пример 8. Пусть М – множество точек á x, y ñ на плоскости, удовлетворяющих условию x 2 + y 2= 1 (т.е. М – это окружность единичного радиуса с центром в начале координат). Нетрудно видеть, что по определению проекции ПР1 М = ПР2 М = [–1, 1] (так обозначен отрезок с концами –1 и 1). Таким образом, для геометрических фигур на плоскости (подмножеств двумерного евклидова пространства E 2), состоящих из двумерных точек – кортежей длины 2, введённая здесь операция проектирования совпадает с хорошо известной операцией проектирования вдоль координатных осей в геометрии ■
Далее будут рассмотрены понятия, которые, в отличие от рассмотренных выше исходных понятий высказывания, множества и кортежа, будут формально определены – через эти, ранее введённые неопределяемые понятия.
Дата добавления: 2015-10-16; просмотров: 74 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Операция проектирования | | | Графики |