Читайте также:
|
|
Метод обработки мелко раздробленных твердых материалов в так называемом «кипящем слое» получил широкое распространение в различных отраслях промышленности. Этот метод заключается в следующем. Через слон порошкообразного материала, помещенного на решетке, продувают снизу воздух (или какой-либо газ) с такой скоростью, что его струи пронизывают и интенсивно перемешивают материал, приводя его как бы в «кипящее» состояние. Такое состояние твердого материала часто называют «псевдоожиженным», так как кипеть могут только вещества, находящиеся в жидком состоянии.
Благодаря тесному соприкосновению твердого материала с газом химические реакции в «кипящем слое» протекают с большой скоростью. Применение обжига в «кипящем слое» дает повышение производительности обжиговых печей в 3—4 раза при более полном извлечении цинка из концентрата.
Метод весьма эффективен при обжиге сульфидных руд и концентратов, сублимации сравнительно летучих металлов, прокаливании, охлаждении и сушке различных веществ.
Из обожженного концентрата цинк извлекают, восстанавливая его коксом и отгоняя образующиеся пары цинка.
Другой метод восстановления цинка заключается в электролитическом выделении его из сульфата. Последний получается обработкой обожженных концентратов серной кислотой.
Цинк — голубовато-серебристый металл. При комнатной температуре он довольно хрупок, но при 100—150 °С он хорошо гнется и прокатывается в листы. При нагревании выше 200 °С цинк становится очень хрупким. На воздухе он покрывается тонким слоем оксида или основного карбоната, предохраняющим его от дальнейшего окисления. Вода почти не действует на цинк, хотя он и стоит в ряду напряжений значительно раньше водорода. Это объясняется тем, что образующийся на поверхности цинка при взаимодействии его с водой гидроксид практически нерастворим и препятствует дальнейшему течению реакции. В разбавленных же кислотах цинк легко растворяется с образованием соответствующих солей. Кроме того, цинк, подобно бериллию и другим металлам, образующим амфотерные гидроксиды, растворяется в щелочах. Если сильно нагреть цинк в атмосфере воздуха, то пары его воспламеняются и сгорают зеленовато-белым пламенем, образуя ZnO.
Применение цинка очень разнообразно. Значительная часть его идет для нанесения покрытий на железные и стальные изделия, предназначенные для работы в атмосферных условиях или в воде. При этом цинковые покрытия в течение многих лет хорошо защищают основной металл от коррозии. Однако в условиях высокой влажности воздуха при значительных колебаниях температуры, а также в морской воде цинковые покрытия неэффективны. Широкое промышленное использование имеют сплавы цинка с алюминием, медью и магнием. С медью цинк образует важную группу сплавов — латуни (см. § 200). Значительное количество цинка расходуется для изготовления гальванических элементов.
М а р г а н ц о в о - ц и н к о в ы й элемент. Из всех применяемых в настоящее время гальванических элементов марганцово-цинковые наиболее распространены. Имеется несколько разновидностей элементов этой системы, но в основе действия их всех лежит окислительно-восстановительная реакция между цинком и диоксидом марганца. В элементах этой системы один электрод цинковый, другой состоит из Мп02. Оба электрода находятся в растворе «лорида аммония.
При работе элемента цинк окисляется;
2Zn = 2Zn2+ + 4е~
Часть образующихся ионов цинка связывается молекулами аммиака в комплексный ион:
Zn2+ + 4NH3 = [Zn(NH3)4]2+
Молекулы аммиака образуются в растворе вследствие гидролиза иона аммония:
4NHt + 4Н20 4NH3 + 4Н30+
Электроны, получающиеся при окислении цинка, по внешней цепи переходят к диоксиду марганца, который при этом восстанавливается. В результате восстановления Мп02 получается смесь нескольких продуктов. В наибольшем количестве получается соединение МпООН, в котором степень окисленности марганца равна +3:
4Мп02 + 4Н+ + 4е~ = 4МпООН
Таким образом, цинковый электрод элемента является анодом и заряжен отрицательно, а электрод из Мп02 служит катодом и заряжен положительно.
Имеющиеся в растворе ионы NHJ и С1" при работе элемента движутся в направлениях, обусловленных процессами, протекающими на электродах. Поскольку у цинкового электрода катионы цинка выходят в раствор, а у катода раствор все время обедняется катионами Н+, то в создающемся электрическом поле ионы NH+, движутся при работе элемента к катоду, а ионы С1~ к аноду. Таким образом, раствор во всех его частях остается электронейтральным.
Если сложить последние четыре уравнения, отвечающие отдельным протекающим при работе элемента процессам, то получится суммарное уравнение окислительно-восстановительной реакции, идущей в элементе:
2Zn + 4Mn02 + 4NHt = Zn2+ + [Zn(NH3)4]2+ + 4MnOOH
Марганцово-цинковые элементы не содержат в себе раствора в обычном понимании этого слова. Необходимый для их работы раствор nh4ci в одних конструкциях имеет консистенцию пасты, в других им пропитан пористый картон, помещаемый между электродами. Поэтому эти гальванические элементы носят условное название сухих элементов.
Марганцово-цинковые элементы широко применяются в качестве источников электропитания установок связи, различных измерительных приборов, карманных фонарей.
Воздушно-цинковый элемент. Здесь отрицательным электродом является цинк, а активным веществом положительного электрода служит кислород воздуха (поры электрода, изготовляемого из смеси активного угля с графитом, заполнены воздухом). Кислород диффундирует к поверхности раздела электрод — раствор. В качестве электролита применяются растворы NaOH или nh4ci.
При работе такого элемента в нем протекает окислительно-восстановительная реакция, которая в случае щелочного электролита выражается уравнением:
Zn + i-02 + 2NaOH = Na2Zn02 -f H20
Дата добавления: 2015-08-21; просмотров: 110 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Глава ВТОРАЯ ГРУППА | | | Механические и коррозионные свойства цинка зависят от присутствия внем небольших количеств примесей других металлов. |