Читайте также:
|
|
Почти полвека назад И.М. Крюков сформулировал простенькую задачу о движении маятника, которая до настоящего времени ставит в тупик специалистов механиков, как теоретиков, так и экспериментаторов, своей кажущейся неразрешимостью. И это притом, что процесс колебания маятника представляется наиболее изученным механическим процессом, а элементы ответа на вопрос излагаются во всех учебниках физики.
Задача может быть сформулирована в следующей форме:
Как значительно (на десятки процентов) изменить эмпирический период колебания маятника, не изменяя длину его подвески и напряженности внешнего гравитационного поля?
Если, согласно механике, принять что период колебания маятника определяется только этими двумя параметрами, то никаких способов его значительного изменения просто не может быть. И именно к такому выводу чаще всего приходят специалисты, рассматривая эту задачу. Однако такой вывод нельзя признать удовлетворительным, поскольку кроме вышеуказанных физических параметров существует и возможность изменения взаимного положения подвески и грузика маятника. Другими словами, грузик может быть неподвижным относительно подвески (иметь одну степень свободы) или свободно двигаться относительно ее, превращаясь в некоторое подобие ротора (иметь две степени свободы). И именно эта возможность оказывается фактором значительного варьирования периода колебания маятника. Рассмотрим, что происходит с периодом при колебании с одной и двумя степенями свободы.
Имеем грузик 1 на подшипнике 2 установленном на оси 3 (см. рис. 35.). Подшипник 2 обеспечивает возможность свободного поворота грузика относительно подвески 4, а сама подвеска 4 вращается в подшипниках 5. Устройство 6 – за- мок, который может заклинивать грузик, обусловливаяему в движении одну или две степени свободы.
Покажем, в полном соответствиис ньютоновской механикой, что частота колебания при одной степени свободы будет значительно отличатьсяот частоты колебания того же маятника с двумя степенями свободы. Рассмотрим колебания маятника с одной степенью свободы. (Грузик заклинен, массой подвески пренебрегаем.) 1. Введем следующие обозначения: J – момент инерции грузика 1 относительно оси 3; m – масса грузика: l – длина подвески (расстояние от центра оси 3 до центра оси 5-5); Q – угол отклонения маятника; g – напряжённость внешнего гравитационного поля (ускорение свободного падения); Т3 – кинетическая энергия маятника с одной степенью свободы; Тn –кинетическая энергия маятника с двумя степенями свободы.
Отметим, что при колебании с одной степенью свободы грузик маятника участвует как в падении (изменение положения по высоте), так и в повороте вместе с подвеской 2 относительно гравиполя Земли и его кинетическая энергия определяется уравнением:
Т3 = JQ2/ 2 + тl2Q/ 2. (3.56)
Тогда функция Лагранжа будет равна:
L = (J + ml2)O/ 2 + mglсosO. (3.57)
Для O(t) имеем уравнение:
(J + ml2)O = - mglsinO. (3.58)
Рис. 35.Если угол O мал, то уравнение (3.57) может быть записано иначе:
O + g/l·O/( 1 + J/ml2) = 0. (3.59)
И частота малых колебаний ω3 равняется:
ω3 = √[ g/l(1 +J/ml2)] = (1 + J/mll2)1/2√g/l (3.60)
Это (3.60) хорошо известное уравнение движения физического маятника.
2. При двух степенях свободы незакрепленный грузик в своем падении независим от вращения подвески (не поворачивается относительно гравиполя), следствием чего становится другая величина его кинетической энергии, потому будет иметь место иная частота колебания. Обозначим угловую скорость поворота грузика на оси 3 через к. Тогда кинетическая энергия Тк равна:
Тк = ml2O2/ 2 +J/ 2 к2, (3.61)
а функция Лагранжа;
L = ml2O2/ 2 + J/ 2 k2 + mglcosO. (3.62)
И для угла О получаем уравнение:
ml2O = mglsinO. (3.63)
Откуда находим частоту малых колебаний?:
ωк = √g/l. (3.64)
А это (3.64) не менее известное уравнение движения математического маятника.
Однако в современной механике никакой физической связи между уравнениями (3.60) и (3.64), кроме подобия в форме записи, не просматривается и потому предполагается, что они описывают как бы различные виды движения. Что касается поворота грузика вокруг оси 3, то для угла поворота ω имеем уравнение:
d(Jк)/dt = 0.
Откуда, при угловой скорости поворота грузика равной углу поворота подвески, получаем: к = const.
Превращение маятника из физического в математический только за счет изменения степени свободы грузика, сопровождаемой изменением кинетической энергии колебания, при неизменной потенциальной энергии возможно только в том случае, если период колебания маятника определяется силовым взаимодействием с каким-то внешним полем и величина взаимодействия зависит от формы закрепления маятника.
Из формул (3.60) и (3.64) явствует, что единственным внешним силовым полем, которое может влиять на период колебания маятника, является гравитационное поле. В формулы входит напряженность гравитационного поля и, следовательно, только она определяет период колебания маятника при неизменной длине подвески, но с изменением способа его закрепления.
По логике рассуждения, принятой в ньютоновской механике, мы не можем перейти от (3.60) к (3.64), что и обусловливает как бы независимое существование в физике математического и физического маятников. Но такой переход должен наличествовать. Ибо это не две независимые формулы, отображающие различные движения маятника, а формализация одного процесса протекающего в различных условиях, определяемых формой его закрепления, а, следовательно, и взаимодействие маятника с гравитационным полем окружающего пространства. Формулы (3.60) и (3.64) отличаются на величину к, равную:
к = (1 +J/ml2)-1/2.
И создается впечатление, что эта величина к = const является постоянным параметром, поскольку включает в себя неизменные величины m, l, r. Поэтому предполагается, что между физическим и математическим (?) движением маятника существует некий необъяснимый скачок, например, типа квантового.
Однако более вероятно, что механизм взаимодействия маятника с гравиполем обусловливает возможность постоянного изменения к в зависимости от движения подвески и грузика относительно осей 3 и 5. Исходя из этого можно провести преобразования, изменяющие формализацию коэффициента к, и получить следующую зависимость:
к = (1 + r2/ l2)1/2. (3.65)
И в числителе и в знаменателе дроби правой части (3.65) стоят радиусы грузика r и подвески l. Так как скорость вращения обода грузика равна произведению его радиуса на частоту, то в общем случае будем иметь для него скорость v1:
v1 = rω.
Откуда:
r = v1 / ω. (3.66)
И для подвески:
l = v/ω1. (3.67)
Поскольку в формулах (3.66) и (3.67) частота ω имеет, в случае физического маятника, одинаковую количественную величину, то, подставляя (3.60) и (3.67) в (3.64), находим зависимость коэффициента к от скорости поворота обода ротора относительно поворота подвески:
к = (1+ v12/v2)-1/2. (3.68)
И окончательно формула (3.60)имеет вид:
ω = √ g/l ·(1 + v12/v2)-1/2. (3.69)
Формула (3.69) показывает, что период колебания маятника обусловливается отношением квадрата скорости его поворота v1 к квадрату скорости поворота подвески v, а потому при жестком закреплении грузика, когда его скорость относительно подвески v1 = 0, мы имеем дело с математическим маятником, который с началом свободного поворота грузика превращается в физический. А это позволяет посредством изменения жесткости закрепления грузика варьировать период колебания маятника, как в сторону возрастания, так и в сторону замедления, что кажется невозможным по механике Ньютона.
Эксперименты с изменяемой степенью свободы маятника (а это и названо маятником Крюкова), проведенные в 1988 г. в ЦАГИ В.П. Якуниным и Н.Г. Панферовым, показали, что изменение степени свободы с одной на две меняет частоту колебания маятника на величину, превышающую 30%.
Теоретически можно показать; что максимальный период достигается только тогда, когда коэффициент становится равным к = √2 = 1,414...
Формула (3.56) свидетельствует о безразличном положении подвески относительно горизонта, а потому эксперимент с изменением степеней свободы ротора-грузика может иметь множество разновидностей, как бы не имеющих никакого отношения к маятнику.
Один из вариантов вертикального закрепления роторов по обе стороны оси 5 описан в данной работе. Второй, не имеющий на первый взгляд никакого отношения к маятникам, предложен самим И. М. Крюковым и назван мною «Рамка Крюкова» [66]. Суть эксперимента заключается в следующем (рис. 36):
Внутри металлической рамки l, установленной на оси АВ в подшипниках, расположены планки 7 и 8 с грузиками 2, способными свободно перемещаться по планкам. Грузики с одной стороны прикреплены к боковинам рамки пружинами, а с другой имеют петли 3и, передвигаясь, растягивают пружины до крючков 4,которые и удерживают пружины в растянутом положении. Крючки 4 тягами 6 соединены со спусковой кнопкой 9. Если в таком положении (грузики имеют одну степень свободы) рамку раскрутить вокруг оси АВ (сообщить ей определенный момент количества движения) и оставить ее вращающейся, то до останова пройдет две-три минуты.
Если же после раскручива-ния, нажать кнопку 9 то освобожденные грузики 2 под действием пружин устремятся к оси АВ (грузики получают две степени свободы). Пока они сходятся к оси, рамка раскручивается в соответст- Рис. 36. вии с «законом» сохранения ко-личества движения. Но достаточно грузикам перейти ось АВ, как вращение рамки мгновенно тормозится почти до полной ее остановки. Грузики раздеформируются. Момент их импульса нейтрализуется, количество движения уменьшается и сохраняется только момент импульса рамки. «Закон» сохранения количества движения как бы нарушается, поскольку система останавливается за счет «внутренних» сил.
Все вышеописанное позволяет сделать следующие выводы:
• маятник является гравитационным прибором, и характер его движения определяется способом деформации с гравитационным полем Земли:
• «физический и математический» маятники различаются эмпирически только количеством степеней свободы, а, следовательно, и способом взаимодействия с гравиполем.
3.6. «Инерциальные» и гравитационные
силы и массы
Постулирование классической механикой эквивалентности инерциальной и гравитационной масс при распространении на взаимодействия тел логически приводит к заключению, что эффект, вызываемый ускорением, экспериментально невозможно отличить от аналогичного эффекта, вызываемого гравитационным притяжением. Этот эффект, используемый Д. Эйнштейном в построении теории гравитации ОТО, предполагает возможность рассмотрения в течение малого промежутка времени и в пределах небольшой области пространства гравитационного поля как приблизительно постоянного и однородного. Вот как иллюстрируется принцип эквивалентности в работе [74]:
«Предстают себе космическую ракету, пролетающую так далеко от гравитирующих тел — звезд или планет, что гравитационные силы, действующие на ракету, ничтожно малы. Пусть мощность ракетных двигателей подобрана так, чтобы ускорение, с которым движется ракета, в точности равнялось ускорению свободного падения g. На космонавта, который сидит в ракете, действует единственная сила — реакция опоры со стороны кресла N. Именно эта сила сообщает космонавту ускорение: согласно второму закону Ньютона N = mg, где т – инертная масса космонавта. Космонавт помнит, что перед стартом, когда ракета стояла неподвижно на Земле, на него со стороны кресла действовала сила N, уравновешивающая силу притяжения к Земле, т.е. N' = m'g. И в том, и в другом случае у космонавта создавалось ощущение, что какая-то сила вдавливает его в кресло. Если т = т', то N = N'. Значит, если гравитационная и инертная массы совпадают, то и в том и другом случае космонавт должен испытывать совершенно одинаковые ощущения: т.е. он, закрыв наглухо иллюминаторы, не смог бы угадать — неподвижна ли ракета, но вблизи есть тело, создающее гравитационное поле с напряженностью g, или гравитационное поле отсутствует, но ракета движется с ускорением g ».
И далее следует сильный вывод: «никакой локальный эксперимент, т.е. эксперимент, проводимый в малой части пространства, в изолированной лаборатории, не позволяет отличить гравитационное поле от ускорения».
Аналогичное утверждается и в популярной брошюре лауреата Нобелевской премии [13]:
«Представим себе, что мы захватили измерительные приборы, погрузились на межпланетный корабль и отправились путешествовать в мир звёзд. Быстро бежит время. Солнце уже стало похоже на маленькую звёздочку. Двигатель выключен, корабль далеко от притягивающих тел.
Посмотрим теперь, что делается в нашей летающей лаборатории. Почему весит в воздухе и не падает на пол, сорвавшийся с гвоздика термометр? В каком странном положении застыл отклонившийся от «вертикали» маятник, висящий на стене. Мы тут же находим разгадку. Предметы потеряли вес. (?? – А.Ч.)
Полюбовавшись на необычную картину, мы решили изменить курс. Нажатием кнопки включаем реактивный двигатель, и вдруг … предметы, окружающие нас словно ожили. Все тела, которые не были наглухо закреплены, пришли в движение. Маятник начал качаться и, постепенно успокаиваясь, пришёл в вертикальное положение, подушка послушно прогнулась под лежащем на ней чемоданом. Посмотрим на приборы, которые указывают, в какую сторону наш корабль начал движение. Конечно, оно направлено вверх. Приборы показывают, что мы выбрали движение с небольшим для возможностей корабля ускорением 9,8 м ⁄с2. Наши ощущения вполне обычны, мы чувствуем себя как на Земле (?? – А.Ч.). Но почему так? По-прежнему невообразимо далеко находится корабль от притягивающих масс, нет сил притяжения (?? – А.Ч.), а предметы приобрели вес (?? – А.Ч.).
Выпустим из рук шарик и измерим, с каким ускорением он падает на пол корабля. Оказывается, ускорение равно 9,8 м ⁄с2. Эту цифру мы только что прочли на приборах, измеряющих ускорение ракеты. Корабль движется с таким же ускорением вверх, с каким тела в нашей лаборатории падают вниз….
Смысл наших наблюдений понять не трудно: на шарик, выпущенный из рук, никакие силы не действуют. Шарик движется по инерции (?? – А.Ч.). Это ракета движется с ускорением по отношению к шарику (?? – А.Ч.), и нам, находящимся в ракете, кажется, что шарик «падает» в сторону обратную направлению ускорения ракеты. Разумеется, ускорение этого «падения» равно истинному ускорению ракеты. Ясно также, что все тела в ракете будут падать «с одинаковым ускорением» (?? – А.Ч.).
(Авторы не замечают, что выпущенный на поверхности Земли шарик проходит за первую секунду путь в 4,9 м, а в ракете – 9,8 м. Это обусловлено качественно различным состоянием шарика. Над поверхностью он неподвижен и относительно пространства и относительно Земли, и ему надо приобретать ускорение. В ракете же, он уже движется с постоянным ускорением относительно пространства. И когда его отпускают – он теряет ускорение. Т.е. всё наоборот, имеет место качественно различные эффекты. А разница в пройденном за секунду пути, сразу же свидетельствует о движении ракеты в космическом пространстве.)
Из всего сказанного мы можем сделать интересный вывод. В ускоренно движущейся ракете тела начинают «весить» (точно они ничего не весят в ракете движущейся без ускорения – А.Ч.). При этом сила притяжения направлена в сторону, противоположную направлению ускорения ракеты, а ускорение свободного «падения» равно ускорению движения ракетного корабля. И самое замечательное то, что практически мы не можем отличить ускоренное движение системы от соответствующей силы тяжести (?? – А.Ч.). Находясь в космическом корабле с закрытыми окнами, мы не могли бы узнать, покоится он на Земле или движется с ускорением 9,8 м ⁄с2 (?? – А.Ч.). Равноценность ускорения и действия силы тяжести называется в физике принципом эквивалентности».
Уверенную аргументацию авторов, физиков-экспериментаторов и теоретиков по профессии, достаточно легко опровергнуть, предложив им провести простой эксперимент с маятником, помещенным вместо ракеты в обыкновенный лифт, движущийся с постоянным ускорением (этот, достаточно простой, эксперимент по замене ракеты лифтом, почему-то, физики в упор не замечают – А.Ч.).
В своем движении лифт, изменяя положение точки закрепления маятника по высоте, а вместе с ней и напряженность внешнего гравиполя, воздействует на деформацию и раздеформацию тела-маятника, и, следовательно, на процесс перехода потенциальной энергии в кинетическую и наоборот. Отсутствие данного перехода приводит к быстрому затуханию колебания маятника. Поэтому в своем колебании в лифте тело маятника будет проходить один первый такт. Второй — раздеформация — зависит от численной величины ускорения и при ускорении, превышающем проекцию амплитуды на вертикальную составляющую, наблюдаться не будет, что и зафиксирует наличие в кабине лифта «инерциального» поля. Таким простейшим способом не только космонавт, но и лифтер может достаточно быстро убедиться в том, что имеет дело не с мощным внешним гравитационным полем, а с движущейся ускоренно «изолированной» лабораторией.
Убеждение, что сила инерции и сила тяготения есть разные, но сводимые друг к другу силы, лежит в основе всех гравитационных теорий и сопровождается предложением иных мыслимых экспериментов, как бы подтверждающих принцип эквивалентности и способных создать условия, при которых силу тяготения невозможно отличить от силы инерции. Так в работе [89] предлагается следующий опыт по его подтверждению:
«Представим себе совершенно закрытый вагон, который движется по горизонтальному полотну дороги с постоянным ускорением (рис. 37, 1). В таком вагоне отвес будет отклоняться от направления, которое мы на Земле называем вертикальным. Равнодействующая силы инерции и силы тяжести отклонит отвес к задней стенке вагона. В вагоне все будет так, как если бы вагон поднимался с постоянной скоростью в гору (рис. 37, 2). А величина силы тяжести равнялась бы сумме действительной сил тяжести и силы инерции в ускоренном, но горизонтально движущемся вагоне(понятно, что надо брать геометрическую сумму векторов). Так как в обоих случаях все тела получают совершенно одинаковые ускорения, нельзя узнать, чтопроисходит с вагоном на самом деле: движется он равномерно в гору при увеличении силы тяжести или ускоренно по ровному месту, если пользоваться только приборами, регистрирующими вес, и не знать подлинной величины силы притяжения к Земле. Если за окнами будет темно, то никакого способа различить силы, нет. Сила притяжения к Земле и сила инерции проявят себя как физически тождественные».
Данная задача сформулирована более хитро, чем эксперимент с ракетой, хотя заключение столь же категорично — нет способов различения инерции и гравитации. Автор за-дачи — теоретик помнит, что при движении с ускорением а вес тела меняется, и при длительном наблюдении в ускоренном вагоне это изменение будет зафикси-ровано. Вот почему нельзя пользоваться весами. По этой же причине второй вагон не стоит наклонно, а движется в гору с постоянной скоростью. В нем тоже будет Рис. 37. наблюдаться эффект уменьшения веса.
Поскольку в классической механике свойства не зависят друг друга, то иных способов обнаружения состояния движения больше не предлагается, хотя таких способов множество. Простейший из них позволяет обнаружить движение вагона с ускорением с помощью обыкновенного метра. Для этого достаточно, оказавшись в вагоне, замерить расстояние h от пола до грузика отвеса. Подождав некоторое время, повторить замер, и если обнаружится изменение h, то, значит, вагон движется с ускорением. Если h осталось неизменным, вагон с равномерной скоростью поднимается в гору.
Более сложные эксперименты, например, с помощью зеркала и зайчика от направленного на него и отраженного на отдаленный экран луча света или с помощью интерферометра Майкельсона, позволяют, находясь в закрытом вагоне, визуально наблюдать его перемещение с ускорением в сантиметрах и даже в долях миллиметра, т.е. с меньшим, чем развивает улитка.
Чем же обусловлены столь серьезные заблуждения в понимании сути физических процессов, связанных с движением тел?
Эти заблуждения определяются постулативным характером начал механики, отсутствием системной взаимосвязи между свойствами, полным совпадением результатов многих теоретических расчетов элементов движения с экспериментальными данными и некоторой предсказательной способностью механики. В частности, при описании движения наличествуют следующие явные и неявные постулаты:
• рассматриваются отдельные свойства тел и их изменение при движении, а не взаимосвязанное изменение всех свойств;
• произвольно разделяются массы на инертную и гравитационную, что искусственно раздваивает силы на инерциальные и гравитационные;
• предполагается тождественность тел в покое и движении;
• движение тела отрывается от эфирного пространства и гравитационного поля;
• постулируется неизменность и независимость пространства от тел, которые в нем движутся;
• предполагается возможность существования скорости без ускорения, отсутствие зависимости, как между ними, так и с движущемся телом;
• постулируется относительность прямолинейного и равномерного движения;
• вводятся (постулируются) искусственные инерциальные системы отсчета;
• и самое главное — отсутствует представление о том, что тело, неподвижное относительно пространства, качественно отличается от того же движущегося любым способом тела. И это отличие всегда можно зафиксировать приборами, находящимися внутри него.
Проиллюстрирую как, базируясь на вышеперечисленных постулатах, возникает неадекватное природе представление о сущности движения.
Сначала отмечу, что не все из перечисленных постулатов исторически принадлежат Ньютону. В частности, у него отсутствует понятие «инерциальные системы отсчета» как абстрактное «геометрическое и кинематическое определение, заключающее в себе нереалистическую идеализацию» [90] и описание событий в терминах этого понятия. В своей механике Ньютон использовал представление о коперниковой системе, отображающей реальное физическое пространство — вместилище, заполненное эфиром. Такое представление до некоторой степени напоминает понятие о месте Аристотеля. И именно поступательное движение тела относительно пространства, эфира и тел, находящихся в них без взаимодействия с первыми, становится у него движением по инерции. Неинерциальным оставалось движение с ускорением, и только потому, что оно обусловливалось либо воздействием внешних сил, либо вращением.
Введение последователями Ньютона представления об инерциальных системах отсчета стало деформацией ньютоновской механики, превращало эти системы в самостоятельные сущности, делало излишним представление о физическом пространстве и совсем ненужным понятие «эфир». Первым это заметил и сразу же отбросил эфир, как и эфирное пространство — Эйнштейн, сначала заменив пространство как реальность пустотой и координатными мнимостями, а затем инерциальными системами отсчета. И поэтому в современной физике вещественное пространство описывается не как телесное образование, взаимодействующее со всеми телами, а как абстрактное пустое вместилище, заполненное не взаимодействующими с пространством полями и телами.
В теории функции инертного пустого пространства приписаны мыслимым инерциальным системам отсчета. Прямым следствием введения инерциальных систем оказался произвольный отрыв движения тела от вещественного пространства и превращение последнего в инерциальную, первичную систему отсчета (в которой можно поместить неподвижного наблюдателя), а тела - во вторичную систему отсчета (в нее усаживается движущийся наблюдатель). Наблюдателей, как дополнение к инерциальным системам отсчета, впервые использовал Мах.Естественно, что наблюдатель понимает наблюдаемое событие не таким, каким оно происходит в природе, а таким, каким оно должно быть по той теории, приверженцем которой является ученый, посадивший этого наблюдателя (не случайно А.А Денисов наименовал их «зеваками» [91]). Являясь исполнителями субъективных устремле-ний ученого, они как бы выполняют функцию «независимого прибора», подтверждающего предлагаемые посылки, и потому наблюдатель в тележке не должен замечать взаимодействия движущегося тела с вещественным пространством, что до него и за него делает автор теории, превращая субъективные домыслы в «реальную» действительность и демонстрируя кажущуюся относительность этого движения.
Приведу еще один пример описания поступательного движения с ускорением тележки (вторичной системы) относительно инер-цииальной коперниковой первичной системы отсчета. По горизонтальным рельсам с пренебрежительно малым трениемкатится тележка (вторичная система отсчета), увлекаемая закрепленном на блоке грузом (рис. 38). На тележке массой т установлен отвес массой т'. Опуска-емое под действием притяжения Земли тело М сообщает тележке постоянноеускорение. При этом отвес отклоняется в сторону, противоположную ускоре-нию на угол α. Величинаотклонения Рис. 38.угла α определяется однозначно ускорением тележки относительно инерциальной системы отсчета и остается неизменной в последующем (Вопрос: аскорость? – А.Ч.).
В этом рассуждении замаскирована ошибка. Оназаключается в том, что тележка движется не относительно абстрактной инерциальной системы отсчета, а относительно Земли. И если относительно мыслимой системы отсчета, с которой тележка, естественно, не взаимодействует, она кажется движущейся с постоянным нарастанием скорости, не влияющей на ее физическое состояние (не меняющей ее качество). То при движении с постоянным ускорением по поверхности Земли изменение скорости движения сопровождается реальным изменением взаимодействия тележки с Землей, которое и вызывает соответствующее изменение угла отклонения отвеса α, т.е. фиксируется новое качество тележки.
Ошибочная форма понятийного описания ускоренного движения определила, в свою очередь, порядок математического доказательства неизменности ускорения α. Покажу, как оно логически проводится. Сначала определяется масса тележки с отвесом M'.
М' = т' + т.
Уравнение движения под действием силы натяжения нити F записывается в виде:
М° = Mg – F, где M'a = F.
Исключив из этих уравнения F, найдем ускорение а:
а = Mg/ (М + М°) = kg,
где k = М/(М + М°) = const?
Полученный некорректный результат однозначно подтверждает принятый постулат о неизменности ускорения а и полное отсутствие взаимодействия с окружающим пространством движущихся тел (тележки с отвесом). Поскольку k определяется делением «неизменных» (?) масс (отмечу, что и массы изменяются, что не учитывается в данных рассуждениях), то он остается неизменным всегда, а вместе с ним остается постоянной величиной и ускорение а и сила инерции Р = М°а.
Теперь задачей наблюдателей становится подтверждение «математически доказанной» неизменности ускорения и силы инерции, а, следовательно, и относительности движения с постоянным ускорением. Вот как они справляются с этой задачей.
С точки зрения «неподвижного» наблюдателя (рис. 38а.): Поскольку отвес отклонен на постоянный угол а (это некорректно «доказывается» математически, но не экспериментально), он движется вместе с тележкой с постоянным ускорением а. Происхождение движения обусловлено действием на массу отвеса т силы та в горизонтальном направлении. Если F' сила натяжения нити отвеса, то горизонтальная составляющая F'·sinα должна равняться та. То есть у неподвижного наблюдателя даже мысли не возникает об экспериментальной проверке истинности математического доказательства. И он оперирует теми же математическими аргументами, основанными на постулате о том, что масса движущегося тела остается неизменной и в покое и в движении.
Дата добавления: 2015-08-03; просмотров: 102 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Взаимодействие тел в эфирном пространстве обусловливает им равное и противоположное противодействие. 4 страница | | | Взаимодействие тел в эфирном пространстве обусловливает им равное и противоположное противодействие. 6 страница |