Читайте также: |
|
Рассмотрим п –мерное проективное пространство Pп.
Определение: Е1 , Е2,…, Еп+1, Е - упорядоченная система различных точек среди которых никакие три не лежат на одной прямой (Р1), никакие четыре не лежат на одной плоскости (Р2), никакие пять не принадлежат (Р3), и т.д. называется проективным репером в пространстве Pп.
Обозначение: R (Е1, Е2, …, Еп+1, Е) - проективный репер на прямой.
Названия: Е1, Е2,…, Еп+1 - вершины репера или базисные точки,
Е - единичная точка,
(Е1Е2), (Е1Е3), …, (ЕпЕп+1) - координатные прямые.
Проективное пространство Pп порождается Vп+1.
Пусть Е1, Е2,…, Еп+1, Е порождаются - ē1, ē2,…, ēп+1, ē Vп+1.
Векторы ē1, ē2,…, ēп+1 – линейно независимы (почему?), а значит могут быть базисом в Vп+1.
Определение: Система векторов ē1, ē2,,…, ēп+1, ē - называется согласованной,
если ē1+ē2 +…+ ēп+1 =ē.
Пусть ē1, ē2,,…, ēп+1, ē - согласованная система векторов и пусть точка М Pп порождается вектором , тогда = х1∙ē1+ х2∙ē2 +…+ хп+1 ∙ēп+1
Определение:Набор чисел (х1 : х2: …: хп+1) называется координатами точки в данном репере.
По аналогии с проективной прямой и проективной плоскостью, координаты точки в Pп определяются с точностью до пропорциональности.
Точки могут лежать на одной прямой или не лежать на одной прямой.
1. А, В, С P1, тогда векторы , , L2 , , - линейно-зависимы α, β такие, что = α∙ā + β∙
=α∙ + β∙ , или rg = 2.
2. А, В P1 и С P1, тогда векторы , , L2
, , - линейно- не зависимы ≠ α ∙ + β ∙
≠α∙ + β∙ , или rg ≠ 2.
Пусть даны две различные точки А и В , по свойствам Рп через две различные точки проходит одна и только одна прямая - (АВ).
Пусть точка Х (АВ), тогда = λ ∙ + μ ∙ или Х=λ ∙ А+ μ ∙ В – параметрическое уравнение прямой в пространстве.
Замечание: В проективном пространстве прямая может задаваться только параметрическим уравнением (сравнить с заданием прямой в евклидовом пространстве).
Однородное уравнение вида и1 х1+ и2 х2+ …+ ип+1 хп+1 = 0 не будет задавать прямую.
Дата добавления: 2015-07-26; просмотров: 163 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Взаимное расположение двух прямых | | | Преобразование координат |