Читайте также:
|
|
В качестве меры механического действия одного тела на другое в физике вводится векторная величина, называемая силой.
Механическое взаимодействие может осуществляться как между непосредственно контактирующими телами (например, при ударе, трении, давлении одного тела на другое и т.п.), так и между удаленными телами.
Особая форма материи, связывающая частицы вещества в единые системы и передающая с конечной скоростью действие одних частиц на другие, называется физическим полем.
Поле, действующее на материальную точку с силой F, называется стационарным, если оно не изменяется с течением времени. Для стационарности поля необходимо, чтобы создающие его тела покоились относительно ИСО, используемой в данной задаче.
Пользуясь понятием силы, в механике говорят обычно о движении и деформации рассматриваемого тела под действием приложенных к нему сил. При этом каждой силе всегда соответствует какое-то определенное тело или поле, действующее с этой силой.
Сила полностью задана, если указаны:
· ее модуль ,
· направление в пространстве
· точка приложения (рис.2.2).
Прямая, вдоль которой направлена сила, называется линией действия силы.
Экспериментально доказано, что механическое действие на тело сил , которые одновременно приложены в одной и той же точке М тела, полностью эквивалентно действию одной силы , равной их геометрической сумме: и приложенной в той же точке А тела.
В абсолютно твердом теле точку приложения силы можно переносить вдоль линии действия силы.
Тело называется свободным, если на его перемещения не наложено никаких ограничений.
Свободное тело может занимать в пространстве всевозможные положения и двигаться любым способом.
Например: свободными телами являются: летящий самолет или космический корабль, плывущая в толще воды подводная лодка.
В большинстве случаев тела нельзя считать свободными, так как на их возможные положения и движения наложены те или иные ограничения, называемые связями.
Например, роторы турбин на электростанциях могут только вращаться, трамвай и поезд могут перемещаться только вдоль рельсов, и т.д.
При изучении поведения несвободных тел или их систем в механике пользуются принципом освобождаемости: несвободное тело или систему тел можно рассматривать как свободное, заменив действие на него тел, осуществляющих связи, соответствующими силами. Эти силы называются реакциями связей, а все остальные силы, действующие на тело, называются активными силами.
Например: задача о движении несвободного шарика, подвешенного на нерастяжимой нити и движущегося под действием силы тяжести, сводится с помощью принципа освобождаемого к задаче о движении свободного шарика, на который помимо силы тяжести действует еще реакция нити.
Принцип освобождаемости непосредственно вытекает из самого определения силы как меры механического действия тел друг на друга. Ведь тела, осуществляющие связи, именно потому и ограничивают движение рассматриваемого тела, что действуют на него с соответствующими силами — реакциями связей.
Отличие реакций связей от активных сил состоит лишь в том, что в задаче о движении несвободного тела значения активных сил обычно бывают заранее известны (заданы при постановке задачи), а значения реакций связей заранее не известны. Их нужно найти по ходу решения задачи. Таким образом, нет никаких принципиальных различий между этими силами. Найденные значения реакций связей должны быть такими, чтобы движение «освобожденного» тела под действием активных сил и реакций связей полностью согласовалось с ограничениями, наложенными на несвободное тело.
Например, при соскальзывании тела по наклонной плоскости на него действуют две активные силы: сила тяжести и сила трения скольжения. Вводя в рассмотрение силу нормальной реакции плоскости, мы можем «освободить» тело. Однако под действием указанных сил тело должно двигаться параллельно «отброшенной» нами наклонной плоскости.
В дальнейшем, рассматривая закономерности движения тел под действием сил. мы постоянно будем пользоваться принципом освобождаемости. Иными словами, мы всегда будем считать, не оговаривая это каждый раз, что рассматриваемое тело свободно или «освобождено». Соответственно всюду, где это необходимо, мы будем включать в число действующих на тело сил помимо активных сил также и реакции связей, не делая между ними каких-либо различий в обозначениях.
Свободная материальная точка может совершать три независимых между собой перемещения — вдоль трех осей координат: OX, OY и OZ. При соскальзывании по наклонной плоскости материальная точка может совершать уже только два независимых перемещения, так как ее координаты все время должны удовлетворять одному условию связи - уравнению наклонной плоскости.
Число независимых возможных перемещений механической системы называется числом степеней свободы этой системы
Итак, свободная материальная точка имеет три степени свободы, а материальная точка, безотрывно скользящая по наклонной плоскости или какой-либо другой поверхности, имеет две степени свободы.
Второй закон Ньютона формулируется следующим образом: ускорение материальной точки пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки:
. (2.4)
Учитывая, что ускорение , получаем
(2.5)
- скорость изменения импульса материальной точки равна действующей на нее силе. В такой формулировке выражение (2.5) называют основным уравнением динамики материальной точки.
Основной закон динамики материальной точки выражает принцип причинности в классической механике, так как устанавливает однозначную связь между изменением в течении времени состояния движения и положения в пространстве материальной точки и действующей на неё силой. Этот закон позволяет, зная начальное состояние материальной точки (ее координаты и скорости в какой-либо начальный момент времени) и действующую на неё силу, рассчитать состояние материальной точки в любой последующий момент времени.
На основании обобщения опытных фактов был сформулирован важный принцип ньютоновской механики, принцип независимости действия сил: если на материальную точку одновременно действует несколько сил, то каждая из них сообщает этой точке такое же ускорения, как если бы других сил не было.
Таким образом, ускорение , приобретаемое материальной точкой массы под действием одновременно приложенных к ней сил равно:
.
Здесь - результирующая сила.
Дата добавления: 2015-07-17; просмотров: 95 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Масса и импульс тела. | | | Механическое действие тел друг на друга всегда является их взаимодействием. |