Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии

Читайте также:
  1. G1#G0Схематические карты распределения климатических
  2. III. Порядок распределения и перечисления членских профсоюзных взносов на счета организаций Профсоюза
  3. Билет 11 вопрос 1. Прямые методы оптимизации. Интервал неопределённости, сущность принципа минимакса и выбор оптимальной стратегии поиска.
  4. Билет 18. Вопрос 1. Прямые методы оптимизации: методы однородных пар и дихотомии, формулы для интервала неопределённости.
  5. В любом случае по каналу связи вместо самой речи передают так или иначе выделенные и квантованные параметры предсказания, интервал и усиление ОТ, параметры возбуждения.
  6. В три-четыре раза выше их нормального ритма
  7. ВАЖНЫ ОТНОШЕНИЕ И ОЖИДАНИЯ

Пусть количественный признак X генеральной совокупности распределен нормально, причем среднее квадратическое отклонение s этого распределения неизвестно. Требуется оценить неизвестное математическое ожидание с помощью доверительных интервалов.

Оказывается, что по данным выборки можно построить случайную величину , которая имеет распределение Стьюдента с степенями свободы. В последнем выражении – – выборочное среднее, – исправленное среднее квадратическое отклонение, – объем выборки; возможные значения случайной величины T мы будем обозначать через t. Плотность распределения Стьюдента имеет вид:

,

где некоторая постоянная, выражающаяся через гамма–функции. Как видно, распределение Стьюдента определяется параметром n – объемом выборки (или, что то же самое – числом степеней свободы ) и не зависит от неизвестных параметров . Поскольку – четная функция от t, то вероятность выполнения неравенства определяется следующим образом:

.

Заменив неравенство в круглых скобках двойным неравенством, получим выражение для искомого доверительного интервала:

Итак, с помощью распределения Стьюдента найден доверительный интервал , покрывающий неизвестный параметр a с надежностью . По таблице распределения Стьюдента и заданным n и можно найти , и, используя найденные по выборке и , можно определить доверительный интервал.

Пример. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n=16 найдены генеральное среднее и исправленное среднее квадратическое отклонение . Требуется оценить неизвестное математическое ожидание при помощи доверительного интервала с надежностью 0,95.

Решение. Найдем по таблице распределения Стьюдента, используя значения . Этот параметр оказывается равным 2,13. Найдем границы доверительного интервала:

.

То есть с надежностью 0,95 неизвестный параметр a заключен в доверительном интервале .

Можно показать, что при возрастании объема выборки n распределение Стьюдента стремится к нормальному. Поэтому практически при n>30 можно вместо него пользоваться нормальным распределением. При малых n это приводит к значительным ошибкам.


Дата добавления: 2015-07-15; просмотров: 143 | Нарушение авторских прав


Читайте в этой же книге: Выборочные характеристики | Статистические оценки параметров распределения. Состоятельность и несмещенность статистических оценок | Надежность и доверительный интервал | Проверка статистических гипотез | Статистический критерий | Критическая область. Область принятия гипотезы. Критические точки | Проверка гипотезы о равенстве математических ожиданий двух нормальных случайных величин при неизвестной дисперсии. | Критерий согласия Пирсона о виде распределения | Статистичні функції | Загальні положення |
<== предыдущая страница | следующая страница ==>
Доверительный интервал для математического ожидания нормального распределения при известной дисперсии| Доверительный интервал для оценки среднего квадратического отклонения s нормального распределения

mybiblioteka.su - 2015-2024 год. (0.005 сек.)