Читайте также:
|
|
Пусть количественный признак X генеральной совокупности распределен нормально, причем среднее квадратическое отклонение s этого распределения известно. Требуется оценить неизвестное математическое ожидание a по выборочному среднему . Найдем доверительные интервалы, покрывающие параметр a с надежностью .
Будем рассматривать выборочное среднее , как случайную величину (т.к. меняется от выборки к выборке), и выборочные значения , как одинаково распределенные независимые случайные величины (эти числа также меняются от выборки к выборке). Другими словами, математическое ожидание каждой из этих величин равно a и среднее квадратическое отклонение – s. Так как случайная величина X распределена нормально, то и выборочное среднее также распределено нормально. Параметры распределения равны:
.
Потребуем, чтобы выполнялось соотношение , где – заданная надежность.
Используем формулу .
Заменим X на и s на и получим:
,
где .
Выразив из последнего равенства , получим:
.
Так как вероятность P задана и равна , окончательно имеем:
.
Смысл полученного соотношения – с надежностью можно утверждать, что доверительный интервал покрывает неизвестный параметр a, причем точность оценки равна .
Таким образом, задача решена. Число определяется из равенства ; по таблице функции Лапласа находят аргумент , которому соответствует значение функции Лапласа, равное .
Следует отметить два момента: 1) при возрастании объема выборки n число убывает и, следовательно, точность оценки увеличивается, 2) увеличение надежности оценки приводит к увеличению (так как функция Лапласа – возрастающая функция) и, следовательно, к возрастанию , то есть увеличение надежности оценки влечет за собой уменьшение ее точности.
Если требуется оценить математическое ожидание с наперед заданной точностью и надежностью , то минимальный объем выборки, который обеспечит эту точность, находят по формуле , следующей из равенства .
Дата добавления: 2015-07-15; просмотров: 163 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Надежность и доверительный интервал | | | Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии |