Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Скалярное поле

Читайте также:
  1. Задание №1. Решить задачи, используя скалярное произведение векторов.
  2. Скалярное произведение векторов

 

Предположим, что в каждой точке некоторой области задано значение скалярной физической величины , т.е. такой величины, которая полностью характеризуется своим числовым значением. Например, это может быть температура точек неравномерно нагретого тела, плотность распределения электрических зарядов в изолированном наэлектризованном теле, потенциал электрического поля и т.д. При этом называется скалярной функцией точки, записывается это так . Область , в которой определена функция , может совпадать со всем пространством, а может являться некоторой его частью.

Определение 4.1. Если в области задана скалярная функция точки , то говорят, что в этой области задано скалярное поле.

 

Будем считать, что скалярное поле стационарное, т.е. величина не зависит от времени .

Если физическая величина векторная, то ей будет соответствовать векторное поле, например, силовое поле, электрическое поле напряженности, магнитное поле и др.

 

Если скалярное поле отнесено к системе координат , то задание точки равносильно заданию ее координат , и тогда функция можно записать в обычном виде функции трех переменных: .

Рассмотрим точки области , в которых функция имеет постоянное значение , т.е. . Совокупность этих точек образует некоторую поверхность. Если возьмем другое значение , то получим другую поверхность. Эти поверхности называются поверхностями уровня.

Определение 4.2. Поверхностью уровня скалярного поля называется геометрическое место точек, в которых функция принимает постоянное значение, т.е.

.

 

В курсе физики при рассмотрении поля потенциала поверхности уровня называют обычно эквипотенциальными поверхностями (т.е. поверхности равного потенциала).

Если скалярное поле плоское, т.е. изучается распределение значений величины в какой-то плоской области, то функция зависит от двух переменных, например, и . Линиями уровня этого поля будут линии уровня функции , т.е. .

В прикладных науках часто употребляются линии уровня для представления изучаемой функции двух независимых переменных. Так, например, рассматривая высоту точки местности над уровнем моря как функцию двух переменных – координат точки, на карты наносят линии уровня этой функции. Они называются в топологии горизонталями. С помощью сети горизонталей удобно следить за изменением высоты местности. В метеорологии пользуются сетями изотерм и изобар (линий одинаковых средних температур и линий равных средних давлений), являющимися линиями уровня температуры и давления как функции координат точки местности.

 

Пример 4.1. Построить в плоскости линии уровня функции .

 


Дата добавления: 2015-07-15; просмотров: 69 | Нарушение авторских прав


Читайте в этой же книге: Функции двух переменных | Предел и непрерывность функции двух переменных | Частные производные ФНП | Частные производные высших порядков | Дифференцируемость и полный дифференциал функции | Производная сложной функции. Полная производная | Касательная плоскость и нормаль к поверхности | Экстремум функции двух переменных | Теорема 3.2 (необходимое условие экстремума). | Градиент |
<== предыдущая страница | следующая страница ==>
В замкнутой области| Производная по направлению

mybiblioteka.su - 2015-2024 год. (0.007 сек.)