Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Предел и непрерывность функции двух переменных

Читайте также:
  1. A. Пределы значимости и разрешимости проблемы теодицеи.
  2. A. ФУНКЦИИ КНОПОК БРЕЛКА
  3. Analize®Compare Means®Paired-Samples T Test (удерживая Ctrl, выберите в списке переменных v7 и v26 и перенесите их в окно «Paired Variables»)®Ok
  4. B. ПРОГРАММНОЕ ОПРЕДЕЛЕНИЕ НЕЙТРАЛЬНОГО ПОЛОЖЕНИЯ КОРОБКИ ПЕРЕДАЧ ДЛЯ АВТОМОБИЛЕЙ С НЕАВТОМАТИЧЕСКОЙ ТРАНСМИССИЕЙ (петля фиолетового провода должна быть перерезана)
  5. C. Механизм распределенных информационных баз
  6. D-3-Гидроксибутират в сыворотке в норме не определяется.
  7. G1#G0Схематические карты распределения климатических

 

Для функции двух (и большего числа) переменных вводится понятие предела функции и непрерывность, аналогично случаю функции одной переменной.

Введем понятие окрестности точки.

Пусть функция определена в некоторой окрестности точки , кроме, может быть, самой этой точки.

Определение 1.6. Число называется пределом функции при и (или, что то же самое, при ® ), если для любого существует такое, что для всех и и, удовлетворяющих неравенству , выполняется неравенство . Записывают:

(1.1)

или

.

 

Из определения следует, что если предел существует, то он не зависит от пути, по которому стремится к (число таких направлений бесконечно). Определения бесконечно малых и бесконечно больших величин являющихся функциями двух переменных, аналогичны соответствующим определениям для функций одной переменной.

Геометрический смысл предела функции двух переменных состоит в следующем. Каково бы ни было число , найдется -окрестность точки , что во всех точках , отличных от , аппликаты соответствующих точек поверхности отличаются от числа по модулю меньше, чем на .

Пример 1.2. Найти предел .

Решение. Будем приближаться к по прямой , где - некоторое число. Тогда

.

Функция в точке предела не имеет, т.к. при разных значениях предел функции не одинаковый (функция имеет различные предельные значения).

,

Предел функции двух переменных обладает свойствами, аналогичными свойствам предела функции одной переменной.

 

Определение 1.7. Функция (или ) называется непрерывной в точке , если она:

1) определена в этой точке и некоторой ее окрестности;

2) имеет предел ;

3) этот предел равен значению функции в точке , т.е.

или .

 

Функция, непрерывная в каждой точке некоторой области, называется непрерывной в этой области. Точки, в которых непрерывность нарушается (не выполняется хотя бы одно из условий непрерывности функции в точке), называются точками разрыва этой функции. Точки разрыва могут образовывать целые линии разрыва. Так, например, функция имеет линю разрыва .

 

Можно дать другое, равносильное приведенному выше, определение непрерывности функции в точке. Обозначим , . Значит, и . Величины и называются приращениями аргументов и . Тогда . Величина называется полным приращением функции в точке .

Определение 1.8. Функция называется непрерывной в точке , если полное приращение функции в этой точке стремится к нулю, когда приращения ее аргументов и стремятся к нулю, т.е.

.

 

Пользуясь определением непрерывности и теоремами о пределах, можно доказать, что арифметические операции над непрерывными функциями и построение сложной функции из непрерывных функций приводит к непрерывным функциям – подобные теоремы имели для функций одной переменной.

 

2. ДИФФЕРЕНЦИРОВАНИЕ ФНП

 


Дата добавления: 2015-07-15; просмотров: 82 | Нарушение авторских прав


Читайте в этой же книге: Частные производные высших порядков | Дифференцируемость и полный дифференциал функции | Производная сложной функции. Полная производная | Касательная плоскость и нормаль к поверхности | Экстремум функции двух переменных | Теорема 3.2 (необходимое условие экстремума). | В замкнутой области | Скалярное поле | Производная по направлению | Градиент |
<== предыдущая страница | следующая страница ==>
Функции двух переменных| Частные производные ФНП

mybiblioteka.su - 2015-2024 год. (0.007 сек.)