Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Уравнения в полных дифференциалах

Читайте также:
  1. I. Азбука квадратного уравнения
  2. Анализ уравнения Лэнгмюра
  3. Дифференциальное уравнение первого порядка в полных дифференциалах.
  4. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
  5. Дифференциальные уравнения
  6. Дифференциальные уравнения
  7. Дифференциальные уравнения

 

Уравнение , в котором левая часть является полным дифференциалом функции U(x,y), т.е.

(7)

(8)

называется уравнением в полных дифференциалах.

Это имеет место в том и только в том случае, когда выполняется равенство:

.

Тогда .

Интегрируем уравнение (7) по x:

(9).

Уравнение (9) продифференцируем по y:

(10).

Сравнивая (10) и(8):

.

Отсюда

.

Подставляя найденную функцию в (9) найдем U(x,y).

Задача №7. найти общий интеграл дифференциального уравнения.

.

Решение. Сгруппируем слагаемые содержащие dx и dy

.

Докажем, что это уравнение в полных дифференциалах.

Пусть , а . Т.е., необходимо показать, что .

и .

Теперь наша задача заключается в том, чтобы найти функцию U(x,y)=c, такую чтобы ее полный дифференциал был таким же, как левая часть нашего дифференциального уравнения.

Пусть (1), а (2).

Проинтегрируем уравнение (1) по переменной x, а вместо произвольной постоянной прибавим функцию, зависящую от y, т.е. (это необходимо, т.к. функция U зависит от двух переменных, а интегрируем мы только по одной).

(3).

Продифференцируем уравнение (3) по переменной y, получим

(4).

Сравнивая уравнения (2) и (4),получим

,

.

Подставим найденную функцию φ(y) в уравнение (3):

.

Т.к., решение уравнения мы искали в виде U(x,y)=c,то ,

что и будет являться ответом.

Замечание. Уравнения в полных дифференциалах можно решать и другим способом. Заключается он в следующем. Ищут интегралы от M(x,y) и от N(x,y) по dx и dy соответственно. Затем ко всем известным членам из первого результата дописывают недостающие члены из второго, получают функцию U(x,y).


Дата добавления: 2015-07-14; просмотров: 96 | Нарушение авторских прав


Читайте в этой же книге: Уравнения с разделяющимися переменными | Однородные уравнения первого порядка | Линейные уравнения первого порядка | Геометрические задачи, приводящие к решению дифференциальных уравнений 1-го порядка | Дифференциальные уравнения высших порядков, допускающие понижение порядка | метод неопределенных коэффициентов |
<== предыдущая страница | следующая страница ==>
Уравнение Бернулли| Метод изоклин

mybiblioteka.su - 2015-2024 год. (0.006 сек.)