Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Линейные неоднородные ДУ 2 порядка с постоянными коэффициентами со специальной правой частью.

Читайте также:
  1. II. Положительное согласование порядка и прогресса
  2. quot;ОБЕСПЕЧЕНИЕ ОБЩЕСТВЕННОГО ПОРЯДКА
  3. X. Перечень нормативных правовых актов, материалов судебной практики и специальной литературы
  4. Б) высокий R в V5-6 отведениях В) блокада правой ножки пучка Гиса
  5. Больной, 70 лет, с жалобами на слабость в правой половине тела, затруднение речи. Больной страдает артериальной гипертензией, ИБС. При
  6. Величины: константы, переменные, типы величин. Присваивание. Ввод и вывод величин. Линейные алгоритмы работы с величинами
  7. Второго порядка с постоянными коэффициентами

 

Рассм. ДУ

Общее решение такого уравнения:

, где

ФСР - уже рассматривали

Укажем метод нахождения частного решения неоднородного уравнения

, если f(x) имеет специальный вид.

Рассмотрим следующие случаи:

I. , где - многочлен степени n.

а) - не корень характеристического уравнения

, где - многочлен степени n с неопределенными буквенными коэффициентами. Подставим в ДУ и сравнив коэффициенты при одинаковых степенях найдём все буквы.

б) - корень характеристического уравнения кратности 1

в) - корень характеристического уравнения кратности 2

II.. , где M,Nчисла

a) не корень характеристического уравнения неопределенные коэффициенты.Подставив в ДУ и приравняв коэффициенты при

находим А и В

б) корень характеристического уравнения кратности 1

Замечание: Если в правой части есть только или

в частном решении должны быть и sin и cos, т.е тригонометрия должна быть полной.

III..

Где , -многочлены степеней m и n

a) не корень характеристического уравнения многочлены степени к с неопределенными коэффициентами

б) корень характеристического уравнения


Дата добавления: 2015-07-14; просмотров: 95 | Нарушение авторских прав


Читайте в этой же книге: Введение | Теорема о существовании единственности решения дифференциального уравнения 1 порядка | Однородные дифференциальные уравнения 1 порядка | Линейные дифференциальные уравнения 1 порядка | Теорема Коши. | Дифференциальные уравнения 2 порядка, допускающие понижение порядка | Линейно независимые и линейно зависимые системы функций. Определитель Вронского и его свойства | Линейные однородные дифференциальные уравнения 2 порядка с постоянными коэффициентами | Линейные однородные ДУ порядка n с постоянными коэффициентами |
<== предыдущая страница | следующая страница ==>
Линейные неоднородные ДУ| Уравнения с разделяющимися переменными

mybiblioteka.su - 2015-2025 год. (0.008 сек.)