Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Линейно независимые и линейно зависимые системы функций. Определитель Вронского и его свойства

Читайте также:
  1. A) создании системы наукоучения
  2. I. О слове «положительное»: его различные значения определяют свойства истинного философского мышления
  3. I. Общие свойства
  4. I. Основные подсистемы автоматизированной информационной системы управления персоналом.
  5. I. Семинар. Тема 1. Понятие и методологические основы системы тактико-криминалистического обеспечения раскрытия и расследования преступлений
  6. II. Информационно-вычислительные системы, применяемые для информационного обслуживания органов федерального и регионального управления.
  7. III. Автоматизированные системы проектирования.

 

Определение: Система функций - называется линейно независимой, если линейная комбинация коэффициенты .

Определение: Систему функций - называют линейно зависимой, если и есть коэффициенты .

Возьмём систему двух линейно зависимых функций т.к или - условие линейной независимости двух функций.

Примеры:

1) линейно независимы

2) линейно зависимы

3) линейно зависимы

Определение: Дана система функций - функций переменной х.

Определитель -определитель Вронского для системы функций .

Для системы двух функций определитель Вронского выглядит следующим образом:

Свойства определителя Вронского:

1) Если - линейно зависимы на [a;b] на этом отрезке.

2) Если - линейно независимые, решения дифференциального уравнения при любых значениях х в области, где определены функции а1…аn

Теорема: Об общем решении линейного однородного дифференциального уравнения 2 порядка.

Если y1 и y2 – линейно независимые решения линейного однородного дифференциального уравнения 2 порядка, то

общее решение имеет вид:

Доказательство: - решение по следствию из Т1 и Т2.

Если даны начальные условия то и должны находится однозначно.

- начальные условия.

Составим систему для нахождения и . Для этого подставим начальные условия в общее решение.

 

 

определитель этой системы: - определитель Вронского, вычисленный в точке х0

т.к и линейно независимы (по 20)

т.к определитель системы не равен 0, то система имеет единственное решение и и находятся из системы однозначно.

 


Дата добавления: 2015-07-14; просмотров: 121 | Нарушение авторских прав


Читайте в этой же книге: Введение | Теорема о существовании единственности решения дифференциального уравнения 1 порядка | Однородные дифференциальные уравнения 1 порядка | Линейные дифференциальные уравнения 1 порядка | Теорема Коши. | Линейные однородные ДУ порядка n с постоянными коэффициентами | Линейные неоднородные ДУ | Линейные неоднородные ДУ 2 порядка с постоянными коэффициентами со специальной правой частью. |
<== предыдущая страница | следующая страница ==>
Дифференциальные уравнения 2 порядка, допускающие понижение порядка| Линейные однородные дифференциальные уравнения 2 порядка с постоянными коэффициентами

mybiblioteka.su - 2015-2024 год. (0.006 сек.)