Читайте также: |
|
1. Для визначення рівняння траєкторії точки виключимо параметр із рівнянь руху (1). Ураховуючи, що час входить в аргумент тригонометричних функцій, скористаємося формулою:
, тобто (2)
З рівнянь руху знаходимо вирази відповідних функцій і підставляємо в рівність (2)
чи (3)
Рівняння параболи (3) є рівнянням траєкторії руху точки. Враховуючи, що
-1 та -1 , маємо обмеження для та :
-1 та -2 , тобто траєкторією руху точки є частина параболи. Побудуємо траєкторію точки на рисунку К1.а з масштабним коефіцієнтом .
2. Визначимо початкове положення точки і положення точки в момент часу на траєкторії. Для цього підставимо в рівняння (1) час і . Отримаємо:
(4)
(5)
Таким чином (1;-2), а (1,77; -1,41). Покажемо ці точки на траєкторії (рис.К1.а).
3. Визначимо швидкість точки. Проекції швидкості в довільний момент часу дорівнюють:
(6)
В момент часу
Модуль швидкості для моменту :
.
Побудуємо вектор швидкості точки по його складовим
, , де і в масштабі (рис.К1.а).
4. Визначимо прискорення точки. Проекції прискорення в довільний момент часу дорівнюють:
(7)
У момент часу одержимо:
Модуль прискорення точки :
Вектор повного прискорення точки побудуємо по його складових , де і в масштабі (рис.К1.б).
5. Визначимо дотичне і нормальне прискорення точки в момент часу , використовуючи формули:
Побудуємо вектор повного прискорення точки по проекціях і (рис.К1.б). Для зображення векторів використовуємо той же масштаб, тобто Значення дотичного прискорення виявилося додатнім, тому відкладаємо його по осі М (дотичної до траєкторії) у напрямку вектора швидкості . Вектор нормального прискорення направимо перпендикулярно до осі М по нормалі М (вбік увігнутості траєкторії).
Збіг векторів повного прискорення при вирішенні задачі в нерухомій системі координат Оxy і рухомій системі координат М говорить про правильність результату.
6. Радіус кривизни траєкторії в точці визначимо по формулі:
Відповідь.
Дата добавления: 2015-10-31; просмотров: 137 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Завдання К-1. Кінематика точки | | | Завдання К-2. Кінематика простих рухів тіл |