Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Решение системы методом почленного сложения (вычитания) уравнений системы

Читайте также:
  1. II. Отнесение опасных отходов к классу опасности для ОКРУЖАЮЩЕЙ ПРИРОДНОЙ СРЕДЫ расчетным методом
  2. III. Избирательные системы.
  3. JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL (ИЗВЕСТИЯ РАН. ТЕОРИЯ И СИСТЕМЫ УПРАВЛЕНИЯ)
  4. quot;СИНТЕЗ РОМАНА. РАЗРЕШЕНИЕ ЗАТРУДНЕНИЯ
  5. V. Внезапное решение
  6. VIII. Регламент балльно - рейтинговой системы для студентов дневного отделения стр. 102
  7. А.2.1.12. Переміщення пацієнта з ліжка на стілець (виконують двоє чи більше осіб методом піднімання плечем; пацієнт може сидіти, але не може пересуватися самотужки).

 

В ходе решения систем линейных уравнений нужно стараться использовать не «школьный метод», а метод почленного сложения (вычитания) уравнений системы. Почему? Это экономит время и упрощает вычисления, как сейчас увидите.

 

Пример 4:

Решить систему линейных уравнений:

Мы взяли ту же систему, что и в первом примере.

Анализируя систему уравнений, замечаем, что коэффициенты при переменной y одинаковы по модулю и противоположны по знаку (–1 и 1). В такой ситуации уравнения можно сложить почленно:

Действия, обведенные красным цветом, выполняются МЫСЛЕННО. Как видите, в результате почленного сложения у нас пропала переменная y.

В этом и состоит суть метода – избавиться от одной из переменных.

Теперь всё просто: – подставляем в первое уравнение системы (можно и во второе, но это не так выгодно – там числа больше):

.

В чистовом оформлении решение должно выглядеть примерно так:

Ответ: x = -4, y = 1.

 

Пример 5:

Решить систему линейных уравнений:

В данном примере можно использовать «школьный» метод, но большой минус состоит в том, что когда мы будем выражать какую-либо переменную из любого уравнения, то получим решение в обыкновенных дробях. А возня с дробями займет время, к тому же, если у Вас не «набита рука» на действиях с дробями, то велика вероятность допустить ошибку.

Поэтому целесообразно использовать почленное сложение (вычитание) уравнений. Анализируем коэффициенты при соответствующих переменных:

Как видим, числа в парах (3 и 4), (4 и –3) – разные, поэтому, если сложить (вычесть) уравнения прямо сейчас, то от переменной мы не избавимся. Хотелось бы видеть в одной из пар одинаковые по модулю числа, например, 20 и 20 либо 20 и –20.

Будем рассматривать коэффициенты при переменной x:

Подбираем такое число, которое делилось бы и на 3 и на 4, причем оно должно быть как можно меньше. В математике такое число называется наименьшим общим кратным. Если Вы затрудняетесь с подбором, просто перемножьте коэффициенты: 3∙4 = 12.

Далее первое уравнение умножаем на число

.

Второе уравнение умножаем на число . В результате система придет к виду:

 

Вот теперь из первого уравнения почленно вычитаем второе.

На всякий случай приведём еще раз действия, которые проводятся мысленно:

Следует отметить, что можно было бы сделать и наоборот – из второго уравнения вычесть первое, это ничего не меняет. Начисто запишем:

.

 

Теперь подставим вычисленное значение переменной (y) в одно из уравнений системы. Например, в первое:

.

Ответ: .

 

Решим систему другим способом. Рассмотрим коэффициенты при переменной (y):

.

Очевидно, что вместо пары коэффициентов (4 и –3) нам нужно получить 12 и –12.

Для этого первое уравнение умножаем на 3, второе уравнение умножаем на 4:

.

Почленно складываем уравнения и находим значения переменных:

Ответ:

 

Пример 6:

Решить систему линейных уравнений:

Это пример для самостоятельного решения (ответ в конце урока).

 

 


Дата добавления: 2015-07-08; просмотров: 170 | Нарушение авторских прав


Читайте в этой же книге: Алгебра матриц | Вынесение минуса из матрицы (внесение минуса в матрицу). | Транспонирование матрицы | Сумма (разность) матриц. | Умножение матриц. | Вычисление определителей | Вычисление обратной матрицы | Находим матрицу миноров. | Решение системы линейных уравнений методом подстановки | После того, как решена ЛЮБАЯ система уравнений ЛЮБЫМ способом, настоятельно рекомендуем выполнить проверку на черновике или калькуляторе. |
<== предыдущая страница | следующая страница ==>
Если в математике Вы имеете дело с дробными числами, то все вычисления старайтесь проводить в обыкновенных правильных и неправильных дробях.| Решение системы по правилу Крамера

mybiblioteka.su - 2015-2025 год. (0.007 сек.)