Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Доверительный интервал. Доверительная вероятность

Читайте также:
  1. Б) любую беду можно с высокой степенью вероятностью предотвратить, используя определенные способы и средства.
  2. Вероятность нормального функционирования элементов КСНО
  3. Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях
  4. Вероятность редких событий. Формула Пуассона
  5. Воздействия на вероятность событий
  6. Доверительный интервал для оценки дисперсии и среднего квадратического отклонения.
  7. Доверительный интервал для оценки математического ожидания при известном s.

Под термином «оценка» понимаются как сами значения параметров генеральной совокупности, полученные по выборке, так и правило, по которому они получены. При формировании интервальных оценок определяют границы интервалов, между которыми с той или иной вероятностью находятся истинные значения параметров.

Вероятности, признанные достаточными для того, чтобы уверенно судить о генеральных параметрах на основании выборочных характеристик, называют доверительными.

В качестве доверительных вероятностей принято выбирать значения 0,9; 0,95; 0,99; 0,999 (их еще выражают в процентах).

(1 – α) – доверительная вероятность, а α – уровень значимости
(α = 0,1; 0,05; 0,01; 0,001), задающий вероятность того, что оцениваемый генеральный параметр выходит за границы доверительного интервала.

Выбор доверительной вероятности производится исследователем, исходя из практических соображений о той ответственности, с какой делаются выводы о генеральных параметрах. Как правило, в научных исследованиях в области спорта считается достаточной доверительная вероятность 0,95 (95 %).

Интервал, в котором с заданной доверительной вероятностью находится оцениваемый генеральный параметр, называется доверительным интервалом.

Иными словами, доверительным интервалом Jp называют случайный интервал (Q1, Q2), который накрывает неизвестную характеристику Q с доверительной вероятностью p.

 

 


Границы доверительного интервала Jp называют:

Q1 = Q* - e1 – нижней доверительной границей;

Q2 = Q* + e2 – верхней доверительной границей.

Значения e1 и e2 могут совпадать (при симметричном распределении Q*) и быть разными (при несимметричном распределении Q*). Они характеризуют точность, а вероятность pнадежность определения Q. Между надежностью и точностью существует обратная зависимость: чем выше надежность, тем ниже точность определения Q и наоборот.

С увеличением числа измерений при заданном p повышается точность определения Q (уменьшаются e1 и e2).

Для точного расчета границ доверительного интервала необходимо знать закон распределения выборочной характеристики Q*.

 


Дата добавления: 2015-07-08; просмотров: 125 | Нарушение авторских прав


Читайте в этой же книге: Методы вычисления коэффициентов взаимосвязи | Проверка нулевых гипотез | Понятие о надежности тестов | Стабильность теста | Эквивалентность тестов | Пути повышения надежности теста | Корреляционное поле | Оценка информативности теста | Эмпирическая информативность (существует измеряемый критерий) | Корреляционное поле |
<== предыдущая страница | следующая страница ==>
Нормальный закон распределения результатов измерений| Построение доверительного интервала для оценки среднего значения генеральной совокупности

mybiblioteka.su - 2015-2021 год. (0.008 сек.)