Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Корреляционное поле. Представим взаимосвязь результатов измерения теста А и ретеста Б в виде графика

Читайте также:
  1. Корреляционное поле
  2. Корреляционное поле

Представим взаимосвязь результатов измерения теста А и ретеста Б в виде графика, для чего в прямоугольной системе координат построим корреляционное поле. Результаты теста А будем откладывать по оси абсцисс, а результаты теста Б по оси ординат.

Для наглядности построим график в системе координат, смещенной относительно нуля. Выберем масштаб, позволяющий нанести на график все исходные данные. М: 1 см ≡ 10 мс.

Так как результаты тестирования измерены в шкале отношений, а число попыток (исходное и повторное тестирования) равно двум, для оценки надежности (стабильности) теста выберем парный коэффициент корреляции Бравэ-Пирсона rАБ, рассчитываемый по формуле:

Пользуясь данными, полученными на I и II этапах игры, составим таблицу 3.2 для расчета показателя надежности (стабильности) теста

Таблица 3.2 – Расчет показателя надежности теста

№ п/п тест А, , мс Ретест Б, , мс , мс , мс2 , мс , мс2 × × , мс2
-12 -7
-34 -34
-17 -289
-21 -16
-14 -112
-11 -3
  S=1648 S=1565   S=4790   S=3293 S=3056

 

Подсчитаем величину показателя надежности (стабильности):

.

Для оценки надежности теста воспользуемся таблицей 3.3.

Таблица 3.3 – Качество надежности теста

Величина показателя надежности 0,99 – 0,95 0,94 – 0,90 0,89 – 0,80 0,79 – 0,70 0,69 и ниже
Надежность Отлич-ная Хоро-шая Удовлет-воритель-ная Сомни-тельная Плохая

 

Вывод: Так как 0,70 < ½rАБ½ < 0,79, надежность (стабильность) теста сомнительная.

Оценим статистическую достоверность показателя надежности.

Выдвинем две статистические гипотезы:

– нулевую – Н0: предполагаем, что показатель надёжности теста статистически недостоверен (rген = 0);

– конкурирующую – Н1: предполагаем, что показатель надёжности теста статистически достоверен (rген > 0).

Для сравнения выдвинутых гипотез найдём критическое значение коэффициента корреляции. По таблице критических точек коэффициента корреляции (Приложение 1) для односторонней критической области при n = 10 и α = 0,05 находим rкрит = 0,549. Сравниваем rнабл с rкрит.

Вывод: Так как (0,77) > rкрит (0,549), показатель надежности (стабильности) теста для данной группы «спортсменов» статистически достоверен с вероятностью 0,95.

Тест с надежностью ниже удовлетворительной недопустимо использовать для контроля развития у спортсменов скоростных качеств. Поэтому повысим надежность теста до удовлетворительного уровня ( = 0,80) путем его удлинения.

Определим, во сколько раз надо увеличить число испытуемых или число попыток при тестировании:

.

Требуемое число испытуемых равно человек.



Требуемое число попыток получим .


Дата добавления: 2015-07-08; просмотров: 147 | Нарушение авторских прав


Читайте в этой же книге: Графическое представление | Графическое представление | Корреляционное поле | Оценка тесноты взаимосвязи | Методы вычисления коэффициентов взаимосвязи | Проверка нулевых гипотез | Понятие о надежности тестов | Стабильность теста | Эквивалентность тестов | Эмпирическая информативность (существует измеряемый критерий) |
<== предыдущая страница | следующая страница ==>
Пути повышения надежности теста| Оценка информативности теста

mybiblioteka.su - 2015-2021 год. (0.006 сек.)