Читайте также:
|
|
Величина коэффициента взаимосвязи рассчитывается с учетом шкалы, использованной для измерений.
Для оценки взаимосвязи, когда измерения производят в шкале отношений или интервалов и форма взаимосвязи линейная, используется коэффициент корреляции Бравэ-Пирсона (коэффициенты корреляции для других шкал измерения в данном пособии не рассматриваются). Обозначается он латинской буквой – r. Вычисление значения r чаще всего производят по формуле:
, (3.1)
где и – средние арифметические значения показателей x и y, и – средние квадратические отклонения, n – число измерений (испытуемых).
В некоторых случаях тесноту взаимосвязи определяют на основании коэффициента детерминации D, который вычисляется по формуле:
. (3.2)
Этот коэффициент определяет часть общей вариации одного показателя, которая объясняется вариацией другого показателя. Например, коэффициент корреляции r = –0,677 (между результатами в беге на 30 м с ходу и тройном прыжке с места). Коэффициент детерминации равен:
.
Следовательно, 45,8 % рассеяния спортивного результата в тройном прыжке объясняется изменением результатов в беге на 30 м. Иными словами, на оба исследуемых признака действуют общие факторы, вызывающие варьирование этих признаков, и доля общих факторов составляет 45,8%. Остальные 100% – 45,8% = 54,2% приходятся на долю факторов, действующих на исследуемые признаки избирательно.
3. Основы теории проверки
статистических гипотез
В физическом воспитании и спорте часто при анализе какого-либо явления приходится по некоторым изменениям показателя делать обобщающий вывод. Например, после тренировочного занятия 18 легкоатлетов у трёх наблюдается неполное восстановление. Можно ли на этом основании судить о трудности тренировочного процесса или это случайность?
Так как указанные выводы делаются на основании относительно небольшого числа результатов измерения показателя (n ≤ 30), необходима проверка достоверности (бесспорности) таких выводов.
Для этого применяются статистические гипотезы.
Статистической гипотезой называется предположение о свойстве генеральной совокупности, которое можно проверить, опираясь на данные выборки. Статистическую гипотезу обозначают символом H.
Обычно выдвигают и проверяют две противоречащие друг другу гипотезы:
1) нулевую (основную) H0;
2) конкурирующую (альтернативную) H1.
Примеры статистических гипотез:
1. Нулевая гипотеза H0: закон распределения результатов измерения является нормальным. Конкурирующая гипотеза H1: закон распределения результатов измерения отличен от нормального.
2. Нулевая гипотеза H0: среднее арифметическое значение генеральной совокупности результатов измерения показателя после цикла тренировок не изменилось. Конкурирующая гипотеза H1: среднее арифметическое значение увеличилось (эффективна или нет методика тренировок).
3. Нулевая гипотеза H0: генеральная дисперсия спортивных результатов спортсмена в результате проведения тренировок не изменилась. Конкурирующая гипотеза H1: генеральная дисперсия уменьшилась (изменилась или нет стабильность результатов спортсмена).
Дата добавления: 2015-07-08; просмотров: 148 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Оценка тесноты взаимосвязи | | | Проверка нулевых гипотез |