Читайте также:
|
|
Обозначим через число появлений события в независимых испытаниях, в каждом из которых вероятность наступления этого события постоянна и равна (соответственно вероятность непоявления также постоянна и равна ).
Тогда, если изменяется от до , то дробь изменяется от до .
Следовательно, интегральную теорему Лапласа можно записать в виде:
или
.
Теперь поставим задачу найти вероятность того, что отклонение относительной частоты от постоянной вероятности не превышает заданного числа , то есть необходимо найти вероятность осуществления неравенства
.
Преобразуем последнее неравенство, заменив знак модуля двойным неравенством и затем приведя к общему знаменателю:
,
.
Умножим все неравенство на выражение :
.
Теперь, если обозначить , то преобразованная теорема Лапласа может быть записана в виде:
Заменив двойное неравенство в левой части последней формулы на исходное выражение , окончательно получим:
.
Вывод: вероятность того, что отклонение относительной частоты от постоянной вероятности не превысит заданного числа , приближенно равна удвоенной функции Лапласа с аргументом .
Дата добавления: 2015-07-07; просмотров: 397 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Интегральная теорема Лапласа | | | на внутрішні санітарно-технічні роботи у ливарному цеху |