Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Об обратном способе математической логики, или о переходе от умозаключений к посылкам. 4 страница

Читайте также:
  1. A) Шырыш рельефінің бұзылысы 1 страница
  2. A) Шырыш рельефінің бұзылысы 2 страница
  3. A) Шырыш рельефінің бұзылысы 2 страница
  4. A) Шырыш рельефінің бұзылысы 3 страница
  5. A) Шырыш рельефінің бұзылысы 3 страница
  6. A) Шырыш рельефінің бұзылысы 4 страница
  7. A) Шырыш рельефінің бұзылысы 4 страница

Пример. Даны две элементарные посылки 1=a+b+c, 1=a+b+c1 и требуется привести их к форме элементарных определений функции u=ab1+a1c. Функцию же u надо разложить на элементарные продуценты. С этою целью берем ее отрицание u1=ab+a1c1 и делаем его однородным относительно a,b,c, т.е. приводим к виду u1=abc+abc1+a1bc1+a1b1c1. А затем берем отрицание этого отрицания; так и получим следующее разложение

u=(a1+b1+c1)(a1+b1+c)(a+b1+c)(a+b+c).

Так как продуцент первой посылки заключается в ряду продуцентов функции u, а продуцент 2-ой посылки в нем не заключается, то в требуемой форме данные посылки будут:

u=u+a1b1c1, u=u(a+b+c1),

где a1b1c1 есть элементарный логический нуль, a+b+c1 элементарная логическая единица. Для поверки мы возьмем единичные формы этих посылок и занесем в них, вместо u и u1, функции ab1+a1c и ab+a1c1. Получим:

1=u+u1(a+b+c)=ab1+a1c+ +(ab+a1c1)(a+b+c)=ab1+a1c+ab+a1bc1=a+a1(c+bc1)=a+a(c+bc1)=a+ +a1(c+b)=a+b+c;

1=u(a+b+c1)+u1=(ab1a1c)(a+b+c1)+ab+a1c1=ab1+a1bc+ab+a1c1=a+ +a1(bc+c1)=a+a1(b+c1)=a+b+c1,

т.е. исходные посылки.

§ 23. Тоже самое для нулевой формы посылок

Если элементарные посылки равенства A=B даны в нулевой форме, то, разбивая данную функцию u на элементарные конституанты и сравнивая с ними конституанты посылок, легко убедиться, что 1) посылка 0=v(p), конституант который заключается в ряду конституантов функции u, принимает форму u=uv1(p), где v1(p) есть элементарная логическая единица задачи; и 2) посылка 0=v(i), конституант которой не заключается в том же ряду, принимает вид: u=u+v(i), где элементарный логический нуль задачи.

Пример. Даны две элементарные посылки 0=abc, 0=ab1c и требуется превратить их в форму элементарных определений прежней функции u=ab1+a1c.

В однородном виде эта функция есть

u=ab1c+ab1c1+a1bc+a1b1c.

конституант 1-ой посылки не заключается между конституантами u; конституант же 2-ой посылки заключается в ряду их. А потому обе посылки принимают вид:

u=u+abc, u=u(a1+b+c1),

где abc есть элементарный логический нуль, a1+b+c1 элементарная логическая единица задачи. Поверка. В нулевой форме последние 2 равенства будут:

0=u1(abc)=(ab+a1c1)(abc)=abc

0=u(ab1c)=(ab1+a1c)ab1c=ab1c,

т.е. совпадают с исходными посылками.

§ 24. Прямой способ получения элементарных определений любой функции

Переходим к прямому способу нахождения для равенства A=B максимальной системы в форме элементарных определений одной и той же функции u. Такой способ окажется несколько сложнее изложенного непрямого способа. Здесь нам необходимо напомнить читателю наш способ определения функции u из равенства 1=M. Способ этот состоит в том, чтобы привести равенство M=1 к виду 1=M=M(u+u1)=u(Mu)+u1(Mu1)= =gu+hu1 и перейти от него к равенству u=gu=h1u1, или к паре равенств h=gu, u=u+h1. При этом g есть вычисленное на самом деле произведение Mu, которое, сверх того, должно быть освобождено от множителя u в случае, если бы оно приняло вид Ku; точнее также h есть вычисленное на деле произведение Mu1, освобожденное от множителя u1 в случае, если бы таковой оказался; наконец h1 есть вычисленное на самом деле отрицание h, освобожденное от множителя u1 или от члена u в случае, если бы таковые в нем оказались.

Когда формула u=gu+h1u1, отвечающая равенству A=B, вычислена, то разлагая g и u на элементарные продуценты, h1 и u1 на элементарные конституанты, и выбрасывая из множителей g те, которые уже имеются в ряду множителей u, а из конституантов h1 те, которые имеются в ряду конституантов u1, мы получим равенство вида u=(g’g’’g’’’…)u+(k’+k’’+k’’’+…)u1, которое и доставит максимальную систему:

u=g’u, u=g’’u, u=g’’’u,…

u=u+k’, u=u+k’’, u=u+k’’’,..

здесь каждое g служит элементарным логическим нулем задачи.

Пример. Дано равенство ab+cd=ac+bd и требуется найти максимальную систему в форме определений функции

u=ad1+bc1.

Единичная форма исходного равенства есть:

1=M=(ab+cd)(ac+bd)+(a1+b1)(c1+d1)(a1+c1)(b1+d1)=abc+abd+acd+ +bcd+(a1+b1c1)(d1+b1c1)=abc+abd+acd+cbd+a1d1+b1c1. Его надо привести к форме 1=(Mu)u+(Mu1)u1. Имеем: Mu=(abc+abd+acd+ +bcd+a1d1+b1c1)(ad1+bc1)=abcd1+ab1c1d1+abc1d+a1bc1d1; u1=(a1+ +d)(b1+c)=a1b1+a1c+b1d+cd; Mu1=(abc+abd+acd+bcd+a1d1+ +b1c1)(a1b1+a1c+b1d+cd)=a1b1d1+a1b1c1+a1bcd+a1cd1+ab1cd+b1c1d+ +abcd+acd+bcd=a1b1d1+a1b1c1+a1cd1+b1c1d+acd+bcd.

Первоначальное равенство приняло вид:

1=gu+hu1=u[abcd1+ab1c1d1+abc1d+a1bc1d1]+u1[a1b1d1+a1b1c1+a1cd1++b1c1d+acd+bcd].

Превращая его, на основании известного мнемонического правила, форму определения u, будем иметь:

u=u[abcd1+ab1c1d1+abc1d+a1bc1d1]+u1(a+b+d)(a+b+c)(a+c1+d)(b+c+ +d1)(a1+c1+d1)(b1+c1+d1)=ug+u1h1

и следовательно также u=ug, u=u+h1. Остается здесь разложить коэффициент при u на элементарные продуценты, коэффициент при u1 на элементарные конституанты. Мы же их имеем разбитыми как раз наоборот. Однако, это обстоятельство не вредит, а помогает делу. А именно, разбитый на множители, коэффициент при u должен заключать отрицания всех не входящих в него конституантов, т.е. это разложение будет:

g=(a+b+c+d)(a+b+c1+d)(a+b+c+d1)(a+b+c1+d1)(a+b1+c+d1)(a+b1+c1+ +d)(a+b1+c1+d1)(a1+b+c1+d)(a1+b+c+d1)(a1+b+c1+d1)(a1+b1+c+d)(a1+ +b1+c1+d1).

Отсюда должны быть отброшены все множители, встречающиеся в разложении u на элементарные продуценты. Желая получить это последнее разложение, приведем u1 к 4-му измерению и возьмем отрицание результата. Будем иметь:

u1=a1b1cd+a1b1cd1+a1b1c1d+a1b1c1d1+a1bcd+a1bcd1+ab1cd+ab1c1d+ +abcd

u=(a+b+c1+d1)(a+b+c1+d)(a+b+c+d1)(a+b+c+d)(a+b1+c1+d1)(a+b1+c1+ +d)(a1+b+c1+d1)(a1+b+c+d1)(a1+b1+c1+d1).

Оказывается, что все эти 9 продуцентов встречаются между продуцентами функции g. Отпуская их из состава u, для произведения ug будем иметь

ug=u(a+b1+c+d1)(a1+b+c1+d)(a1+d1+c+d).

Функцию h1 надо разбить на элементарные конституанты. Имеем:

h1=(a+b+d)(a+b+c)(a+c1+d)(b+c+d1)(a1+c1+d1)(b1+c1+d1)=(a+b+c+ +d)(a+b+c1+d)(a+b+c+d1)(a+b1+c1+d)(a1+b+c+d1)(a1+b+c1+d1)(a1+b1+ +c1+d1)(a+b1+c1+d1).

В это выражение не входит 8 продуцентов, отрицания которых и будут конституантами функции h1. Так получим след. разложение:

h1=abcd1+abc1d+abc1d1+ab1cd1+ab1c1d1+a1bc1d+a1bc1d1+a1b1cd.

Отсюда должны быть выброшены все элементарные конституанты функции u. В однородном виде 4-го измерения эта функция есть:

u=ad1+bc1=abcd1+abc1d1+ab1cd1+ab1c1d1+abc1d+a1bc1d+a1bc1d1.

Все эти 7 конституантов входят в выражение h1. Выбрасывая их, мы получим для суммы u+h1 следующее выражение: u+h1=u+a1b1cd. Таким образом, пара равенств u=ug, u=u+h1 принимает вид:

u=u(a+b1+c+d1)(a1+b+c1+d)(a1+b1+c+d), u=u+a1b1cd.

След. 4 элемента задачи будут:

u=u(a+b1+c+d1), u=u(a1+b+c1+d),

u=u(a1+b1+c+d), u=u+a1b1cd,

причем в первых трех коэффициенты при u суть элементарные логические единицы, а в последнем член a1b1cd есть элементарный логический нуль задачи.

§ 25. Совмещение таких определений

Когда для равенства A=B найдена максимальная система в форме определений функции u, то, комбинируя между собою эти последние на все лады, получим всевозможные системы, тождественные с исходным равенством. При комбинировании определений должны быть соблюдаемы правила, совершенно аналогичные тем, которые изложены в § 19.

Пример. Для равенства

ab+cd=ac+bd

система элементарных посылок в форме определений функции

u=u+a1b1cd, u=u+abc1d1,

u=u+a1bc1d, u=u+ab1cd1,

которые, будучи комбинируемы, должны быть складываемы. Складывая их все, получим одно равенство

u=u+(a1b1cd+abc1d1+a1bc1d+ab1cd1),

которое должно быть тождественно с исходным, в чем легко убедиться из того, что полный логический нуль задачи есть как раз тот самый многочлен, который заключен в скобки в полученной формуле полного определения u.

§ 26. Определение одной функции с помощью другой. Соответственные противоположные задачи

Каждую данную функцию f(a,b,c,d…) можно рассматривать как определение другой данной функции u, и найти все элементы этого определения. Для этого достаточно составить равенство u=f(a.b.c.d…) и поступать с ними совершенно так, как выше мы обрабатывали равенство A=B.

Приравняв функцию f сначала функции u, а потом функции u1, мы опять получим пару противоположных задач. Когда все элементы одной из таких задач найдены, то все элементы противоположной задачи могут быть найдены подобно тому, как это объяснено в нижеследующем примере.

Пример. Равенство

u=ab1+a1c=ac1+a1 = f(a.b.c)

имеет 4 элемента:

u=u(a1+b+c1), u=u(a+b+c1)

u=u+acb1, u=u+a1bc1.

Функция u, разложенная на элементарные конституанты и продуценты, есть:

u=ab1+a1c=ab1c+ab1c1+a1bc+a1b1c

u=(a1+b1+c1)(a1+b1+c)(a+1+c)(a+b+c).

Сравнение этих разложений с предыдущей системой элементов убеждает нас, что в систему эту не вошли следующие 4 равенства, отличные от тождеств:

u=u(a+b1+c1), u=u+abc,

u=u(a1+b+c), u=u+a1b1c1,

отрицания которых и будут элементами противоположной задачи:

u1=ab+a1c1=ac1+a1b=f(a.b.c),

а именно:

u1=u1+a1bc, u1=u1(a1+b1+c1),

u1=u1+ab1c1, u1=u1(a+b+c),

в чем легко было бы убедиться и непосредственно.

§ 27. Превращение одних систем посылок в другие

В предыдущих §§ мы исчерпали вопрос о тождественном замещении всевозможными системами всякого данного равенства A=B. Для этой цели нами было предложено 4 параллельных способа, каждый не менее как в двух вариантах. При этом мы убедились, что, при n классах ни одно равенство A=B не может быть замещено более чем 2т1 равенствами.

Нескольких слов достаточно, чтобы применить изложенные способы к замещению систем системами. Дело в том, что всякая данная система посылок тождественно замещается одним равенством. А потому, замещая данную систему одним равенством в каком-либо из 4-х видов:

0=N, 1=M, a=f, u=φ,

Нам остается только избрать тот или другой из указанных четырех параллельных способов.

Впрочем, можно поступать несколько иначе, а именно: не совмещая посылок данной системы в одно равенство, разбивать каждую из этих посылок на системы. При этом может оказаться повторение равенств, доставленных различными исходными посылками. Все такие повторения должны быть уничтожены (хотя, конечно, они нисколько не вредят делу).

Для примера возьмем систему трех посылок:

a=ab, b=b(ac1+a1c), ab1+a1c=ac1+a1b

и найдем максимальную систему этой задачи.

Так как форма элементарных посылок не предрешена, то мы изберем простейшую, т.е. нулевую форму. В нулевой форме исходная система есть:

0=ab1, 0=b(ac+a1c1),

0=(ab1a1c)(ac+a1b1)+(ab+a1c1)(ac1+a1b)=ab1c+a1b1c+abc1+a1bc1.

Затем нам предстоит на выбор: или совместить эти равенства в одно и заместить последнее максимальной системой, или же каждую посылку порознь заместить отвечающею ей максимальною системою. Избирая первый путь, мы получаем одно равенства

0=N(a,b,c)=ab1+abc+a1bc1+ab1c+a1b1c+abc1+a1bc1,

которое, по приведении к 3-му измерению и уничтожении повторяющихся членов, будет:

0=ab1c+ab1c+abc+a1bc1+a1b1c+abc1.

А след. данная задача имеет 6 элементов, именно:

0=ab1c, 0=ab1c1, 0=abc, 0=a1bc1, 0=a1b1c, 0=abc1.

Избирая второй путь, мы вместо посылки 0=ab1 получим два элемента: 0=ab1c, 0=ab1c1; вместо второй исходной посылки опять 2 элемента: 0=abc, 0=a1bc1, и вместо 3-й 4 элемента: 0=ab1c, 0=a1b1c, 0=abc1, 0=a1bc1. Получилось 8 элементов, из которых различны только 6, те же самые, что и выше.

§ 28. Неуместность рассматривания логических элементов в прямой задачи теории умозаключений и необходимость такого рассматривания в обратной задаче.

Здесь мы находим уместным провести параллель между нашими приемами и способом Джевонса, изложенном в § 3 первой части настоящей статьи. В способе Джевонса тоже фигурируют элементарные конституанты, но только не там, где следует, т.е. не в составе логического нуля, а в выражении логической единицы. В составе логического нуля элементарные конституанты прямо указывают все элементы задачи; в выражении же логической единицы они оказываются только бесполезным усложнением ее формы. Здесь они представляют собрание всех элементов противоположной задачи[40]. Для указания же элементов данной задачи, логическая ее единица должна быть разбиваема не на элементарные конституанты, как у Джевонса, но на элементарные продуценты, каждый из которых сам есть одна из элементарных логических единиц той же задачи.

Рассматривание и употребление элементарных конституантов или продуцентов совершенно неуместно в прямом способе логики, т.е. при построении понятий логики, так как идет речь о возможно простой и полной форме искомых умозаключений. Логические же элементы сложнее, чем у всяких других функций. Наоборот, в обратном способе логики, где построение всевозможных посылок, отвечающих данному умозаключению, тесно связано с построением максимальной системой элементарных посылок, рассматривание и употребление логических элементов не только уместно, но и необходимо.

§ 29. Правила составления сложных логических задач. Возможность логических задач с абсурдными посылками и определение истинного значения таких посылок

В заключение покажем, как можно воспользоваться основаниями изложенного нами обратного способа логики для построения возможно сложной логической задачи.

Предположим, что мы желаем составить задачу об m элементарных, p посылках и n классах. (Число p должно быть не больше числа m, число же m менее числа 2n). С этою целью напишем m каких-либо, но только различных, элементарных продуцентов данных классов и приравняем каждый из них единице, т.е. миру речи будущей задачи. Затем скомбинируем (как нам заблагорассудится) помощью перемножений эти m элементов в требуемое число p посылок. Далее, оставляя часть этих p посылок в единичной форме, приведем другую часть к форме нулевой, а остальные представим под формой определения различных простых классов, их отрицаний, различных функций и их отрицаний. Наконец, останется приписать классам a,b,c,d… какое-либо реальное значение и затем словесно изложить содержание всех p посылок в окончательной их форме.

Для примера составим какую-нибудь задачу о четырех классах, семи элементах и трех посылках.

Возьмем на удачу 7 продуцентов и приравняем каждый из них единице, т.е. пусть элементы задачи будут:

1=a+b+c+d, 1=a1+b+c+d, 1=a+b1+c+d1, 1=a+b1+c+d, 1=a1+b+c1+d, 1=a+b+c1+d1, 1=a1+b+c+d1.

Составим из этих элементов 3 посылки, напр. такие:

1=(a+b+c+d)(a1+b+c+d)=b+c+d

1=(a+b1+c+d1)(a+b1+c+d)=a+b1+c

1=(a1+b+c1+d)(a+b+c1+d)(a1+b+c+d1)=(b+c1+d)(a1+b+c+d1)=b+(c1+ +d)(a1+c+d1)=b+a1c1+a1d+cd+c1d1.

Первую из этих посылок решим относительно функции bc, для чего необходимо разбить эту функцию на продуценты классов b,c,d. Будем иметь

(bc)1=b1+c1=b1+bc1=b1cd+b1cd1+b1c1d+b1c1d1+bc1d+bc1d1

bc=(b+c1+d1)(b+c1+d)(b+c+d1)(b+c+d)(b1+c+d1)(b1+c+d).

так как продуцент 1-ой посылки заключается в ряду продуцентов функции bc, то след. bc содержит в себе отрицание этого продуцента, т.е. 1-я посылка принимает вид:

bc=bc+b1c1d1,

где b1c1d1 есть элементарный логический нуль задачи. Прибавим, что эта посылка получила бы вид, не только замысловатый, но и по-видимому совершенно абсурдный. А между тем такая посылка не только возможна логически, но даже имеет 2 элемента. (В § 22 было объяснено, что истинное значение всякой посылки u=u+s(i), где s(i) логический нуль, есть s(i)=0).

Вторую посылку мы решим относительно функции a+b, разложение которой на продуценты всех 4-х классов есть:

a+d=(a+b+d)(a+b1+d)=(a+b+c+d)(a+b+c1+d)(a+b1+c+d)(a+b1+c1+d)

продуценты же 2-ой посылки суть:

a+b1+c+d1 и a+b1+c+d,

т.е. 1-й из них не содержится в предыдущем ряду, второй содержится в нем, а потому получаются два определения:

a+d=(a+d)(a+b1+c+d1), a+d=(a+d)+a1bc1d1,

которые совмещаются в одно такое:

a+d=(a+d)(a+b1+c+d1)+(a+d)1a1bc1d1,

где a+b1+c+d1 есть элементарная логическая единица, a1bc1d1 элементарный логический нуль задачи. Вот какую сложную форму принимает вторая посылка. Наконец третью посылку, которая сама по себе достаточно сложна, оставим без перемены. И так, нам предстоит составить задачу о следующих трех посылках:

bc=bc+b1c1d1

a+d=(a+d)(a+b1+c+d1)+(a+d)1a1bc1d1

1=b+a1c1+a1d+cd+c1d1=b+a1(c1+d)+cd+c1d1

Остается назначить терминам реальное значение. Пусть 1 обитатели данного дома, a богатые из них, d здоровые, c молодые, d семейные. Посылки задачи будут таковы: 1) все несемейные обитатели данного дома, не обладавшие ни здоровьем, ни молодостью, были не только здоровы, но и молоды; 2) каждый богатый или семейный обитатель того же дома был или богат, или нездоров, или молод, или бессемеен; кроме того, каждый здоровый обитатель, не обладавший ни богатством, ни молодостью, ни семьею, принадлежал или к богатым, или к семейным обитателям; наконец 3) весь персонал обитателей того же дом состоял, не считая здоровых людей, из бедняков, частью пожилых, частью семейных, из молодых семейных особ и из пожилых бессемейных. ─В заключение остается предложить вопросы, касающиеся определения из этих посылок какого-либо класса или какой-либо функции. Этим мы заниматься не будем, а вместо того остановим наше внимание на следующем обстоятельстве.

Первая посылка и часть второй с умыслом нами представлены под абсурдной формой для показания, что не всегда абсурдная форма выражения вовсе нет надобности отбрасывать абсурдное выражение, а достаточно указать условие, при котором абсурд перестанет быть таковым. Такое условие и заключает в себе истинный смысл абсурдного выражения. Освобожденная от абсурдной формы первая посылка будет такова: между обитателями данного дома не было таких бессемейных особ, которые не обладали ни здоровьем, ни молодостью. Точно также, вторая часть второй посылки, освобожденная от абсурдной формы, будет такова: в данном доме не было здоровых обитателей, лишенных богатства, молодости и семьи. После этого становится понятным, что отбрасывать абсурдное выражение, не попытавшись определить условия возможности логического его значения, весьма опасно, потом, что при этом может оказаться отброшенной существенная часть сведений, доставляемых посылками задачи.

 

{{{{


 


Дата добавления: 2015-07-08; просмотров: 110 | Нарушение авторских прав


Читайте в этой же книге: ВВЕДЕНИЕ. | О способах решения логических равенств. 1 страница | О способах решения логических равенств. 2 страница | О способах решения логических равенств. 3 страница | О способах решения логических равенств. 4 страница | О способах решения логических равенств. 5 страница | О способах решения логических равенств. 6 страница | О способах решения логических равенств. 7 страница | Об обратном способе математической логики, или о переходе от умозаключений к посылкам. 1 страница | Об обратном способе математической логики, или о переходе от умозаключений к посылкам. 2 страница |
<== предыдущая страница | следующая страница ==>
Об обратном способе математической логики, или о переходе от умозаключений к посылкам. 3 страница| ПОРЕЦКИЙ – ГОРДОСТЬ РОССИИ.

mybiblioteka.su - 2015-2024 год. (0.025 сек.)