Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Свойства дисперсии. Дисперсия постоянной величины с равна нулю.

Читайте также:
  1. I. Общие свойства хрящевых тканей
  2. I. СВОЙСТВА АТМОСФЕРЫ.
  3. V. Коллигативные свойства растворов
  4. А. Основными свойствами анализаторов являются следующие.
  5. Адаптогенные свойства алоэ вера
  6. Аксиомы векторного пространства. Линейная зависимость и независимость системы векторов. Свойства линейной зависимости.
  7. Акцент на функциональные свойства и преимущества

Дисперсия постоянной величины с равна нулю.

Доказательство: по определению дисперсии

При прибавлении к случайной величине Х неслучайной величины с ее дисперсия не меняется.

D [ X + c ] = D [ X ].

Доказательство: по определению дисперсии

(6.12)

3. При умножении случайной величины Х на неслучайную величину с ее дисперсия умножается на с2.

Доказательство: по определению дисперсии

. (6.13)

Для среднего квадратичного отклонения это свойство имеет вид:

(6.14)

Действительно, при ½С½>1 величина сХ имеет возможные значения (по абсолютной величине), большие, чем величина Х. Следовательно, эти значения рассеяны вокруг математического ожидания М [ сХ ] больше, чем возможные значения Х вокруг М [ X ], т.е. . Если 0<½с½<1, то .

Правило 3s. Для большинства значений случайной величины абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения, или, другими словами, практически все значения СВ находятся в интервале:

[ m - 3 s; m + 3 s; ].(6.15)


Дата добавления: 2015-07-10; просмотров: 131 | Нарушение авторских прав


Читайте в этой же книге: Теоремы сложения вероятностей. | Теоремы умножения вероятностей. | Формула полной вероятности. | Формула Байеса. | Теорема о повторении опытов. Формула Бернулли. | Локальная и интегральная теоремы Лапласа. | Функция распределения и ее свойства. | Непрерывная случайная величина. Плотность распределения случайной величины и ее свойства. | Математического ожидания. | Математическое ожидание случайной величины. |
<== предыдущая страница | следующая страница ==>
Дисперсия случайной величины и ее свойства.| Моменты высших порядков.

mybiblioteka.su - 2015-2025 год. (0.007 сек.)