Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Решение. Точками разрыва функции являются точки разрыва функций в промежутках

Читайте также:
  1. Графическое решение.
  2. Образы предмета взад и вперед, пытаясь принять решение.
  3. Ответственное решение.
  4. Параллактический треугольник и его решение.
  5. По результатам рассмотрения жалобы выносится решение.
  6. Разрешение.
  7. Решение.

Точками разрыва функции являются точки разрыва функций в промежутках , ,…, , кроме того, точками возможного разрыва функции являются точки в окрестности которых и в самих точках функция задаётся разными аналитическими выражениями.

Точка является точкой непрерывности функции тогда и только тогда, когда: .

а) Поскольку функции и непрерывны в промежутках и как элементарные функции, определённые в каждой точке данных промежутков, то непрерывностьфункции может нарушиться только в точке её возможного разрыва .

Определяем значение параметра из условия непрерывности функции в точке : . Вычисляя , , : , , , из условия непрерывности , находим .

График непрерывной функции имеет вид изображённый на рис. 1.

б) Функции и непрерывны в промежутках и как элементарные функции, определённые в каждой точке данных промежутков, а функция в промежутке имеет точкой разрыва точку , в которой она не определена. Тогда для функции точка является точкой разрыва, а точки и , в окрестности которых и в самих точках функция задаётся разными аналитическими выражениями, являются точками возможного разрыва.

Исследуем на непрерывность точки :

1)

.

Следовательно, точка - точка разрыва 1-го рода функции .

2)

Следовательно, точка - точка бесконечного разрыва (2-го рода) функции .

3)

.

Следовательно, точка - точка непрерывности функции .

График функции имеет вид, изображённый на рис.2.

Ответ: а) Функция непрерывна при (рис.1); б) - точка разрыва 1-го рода, -точка бесконечного разрыва функции (рис.2).

 

Рис.1 Рис.2

12.1-30. Даны комплексные числа , , и алгебраическое уравнение . Требуется: а) вычислить , , ; б) представить комплексное число в тригонометрической форме, вычислить и результат представить в алгебраической форме; в) найти все корни алгебраического уравнения на множестве комплексных чисел.


Дата добавления: 2015-07-10; просмотров: 121 | Нарушение авторских прав


Читайте в этой же книге: Методические указания по изучению дисциплины. | Задания для контрольной работы. | Е)длину высоты пирамиды . | Раздел I. Линейная алгебра. | Раздел IV. Введение в анализ. | Раздел V. Комплексные числа. Алгебра многочленов. | Б) Метод обратной матрицы. | Решение. | Решение. | Краткие теоретические сведения. |
<== предыдущая страница | следующая страница ==>
Г) ; д) ; е) .| Решение.

mybiblioteka.su - 2015-2024 год. (0.007 сек.)