Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Б) Метод обратной матрицы.

Читайте также:
  1. I. Определение и проблемы метода
  2. I. ОПРЕДЕЛЕНИЕ И ПРОБЛЕМЫ МЕТОДА
  3. I. ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЙ РАЗДЕЛ
  4. I. Экспертные оценочные методы
  5. II МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ПОДГОТОВКЕ К ПРАКТИЧЕСКОМУ ЗАНЯТИЮ
  6. II. Категории и методы политологии.
  7. II. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ВЫПОЛНЕНИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

1б) Записываем систему уравнений в матричном виде:

или

2б) Вычисляем определитель системы и проверяем, что он отличен от нуля:

3б) Так как , то матрица системы имеет обратную матрицу и единственное решение системы определяется формулой:

или

4б) Находим обратную матрицу (методом присоединённой матрицы):

.

Тогда .

5б) Находим решение:

.

6б) Выполняем проверку: .

Ответ: .

В) Метод Гаусса.

1в) Записываем расширенную матрицу системы:

.

2в) Выполняем прямой ход метода Гаусса.

В результате прямого хода матрица системы должна быть преобразована с помощью элементарных преобразований строк к матрице треугольного или трапециевидного вида с элементами . Система уравнений, матрица которой является треугольной с элементами , имеет единственное решение, а система уравнений, матрица которой является трапециевидной с элементами , имеет бесконечно много решений.

. В результате элементарных преобразований матрица системы преобразована к специальному виду . Система уравнений, матрица которой , является треугольной с ненулевыми диагональными элементами , имеет всегда единственное решение, которое находим, выполняя обратный ход.

Замечание. Если при выполнение преобразования расширенной матрицы в преобразованной матрице появляется строка , где , то это говорит о несовместности исходной системы уравнений.

3в) Выполняем обратный ход метода Гаусса.

Записываем систему уравнений, соответствующую последней расширенной матрице прямого хода: и последовательно из уравнений системы, начиная с последнего, находим значения всех неизвестных: .

4в) Выполняем проверку: .

Ответ: .

 

4.1-30. Найти общее решение для каждой из данных систем методом Гаусса:

А).


Дата добавления: 2015-07-10; просмотров: 149 | Нарушение авторских прав


Читайте в этой же книге: Цель и задачи дисциплины, её место в учебном процессе. | Задачи изучения дисциплины. Требования к знаниям и умениям студента. | Тема 8. Предел функции. Эквивалентные функции. | Методические указания по изучению дисциплины. | Задания для контрольной работы. | Е)длину высоты пирамиды . | Раздел I. Линейная алгебра. | Раздел IV. Введение в анализ. | Решение. | Г) ; д) ; е) . |
<== предыдущая страница | следующая страница ==>
Раздел V. Комплексные числа. Алгебра многочленов.| Решение.

mybiblioteka.su - 2015-2025 год. (0.006 сек.)