Пример 1. Анализ предложенной задачи приводит к следующим выводам:
Пример 6. | Пример 7. | Построение эпюры Q в случае прямолинейности эпюры М. | Построение эпюры Q в случае, если эпюра М очерчена по квадратной параболе. | Построение эпюр внутренних усилий в консольных рамах. | Пример 8. | Построение эпюр внутренних усилий в трехшарнирных рамах. | Построение эпюр внутренних усилий в многопролетных статически определимых балках. | Пример 11. |
Анализ предложенной задачи приводит к следующим выводам:
- данная конструкция является консольной балкой;
- определение опорных реакций в такой конструкции необязательно;
- построение эпюры моментов следует начинать со свободного конца;
- число характерных участков равно двум (см. стр.10).
Пронумеруем границы характерных участков для лучшего усвоения предлагаемого алгоритма построения эпюры изгибающих моментов. Расчет начинаем с участка 1-2. Для этого прибегнем к такому приему – мысленно установим в сечении, совпадающем с окончанием первого участка, жесткую заделку (рис.25,а). При этом участок 1-2 становится аналогом первого частного случая (см. рис.18), поэтому характер эпюры и величина изгибающего момента правее точки 2 известны (рис.25,б).
3
|
- 14 –
На следующем шаге ликвидируем условную заделку правее сечения 2 и переставляем ее в сечение 3 (рис26,а). При этом балка в сечении 2 восстанавливает свои кинематические характеристики. Далее рассмотрим участок 2-3. Приложим к нему сосредоточенный момент М=9, отложенный выше нейтральной оси в сечении, правее т.2 (см. рис.25,б) и растягивающий, таким образом, верхние волокна. Кроме того, на участок 2-3 переносим сосредоточенную силу Р2=3, прикладываем ее в точке 2 (рис.26,б) и добавляем сосредоточенную силу Р1= 7. Определим равнодействующую двух вертикальных сил в сечении 2: R = P1-P2= 7-3= 4 (рис.26,в). Исходя из принципа независимости действия сил, вычислим величину изгибающего момента в сечении 3. Независимое действие М=9 соответствует частному случаю 2 (рис.21), приводя к растяжению верхних волокон. Отложим ординату 9 выше нейтральной оси (рис.26,г); независимое действие сосредоточенной силы R=4 приводит к растяжению нижних волокон (по аналогии с частным случаем 1 на рис.18). А величина созданного ею момента в заделке 3 равна М3=Р×L=4×4=16. Отложим эту ординату ниже нейтральной оси. Алгебраическая сумма воздействий (в данном случае изгибающих моментов) в заделке 3 равна М3=16-9=7. Этот момент растягивает нижние волокна. В пределах характерного участка 2-3 эпюра изгибающих моментов прямолинейна. Результат проведенного расчета на участке 2-3 – на рис.26,д. На рис. 26,е изображена полная эпюра моментов для рассмотренного случая загружения консольной балки системой сосредоточенных сил.
3
|
3
|
3
|
3
|
7
|
9
|
9
|
7
|
- 15 –
Обратим внимание на характерную особенность полученной эпюры в сечении 2. При действии сосредоточенной силы на эпюре изгибающих моментов в этом сечении наблюдается перелом (или же излом) в сторону действия этой нагрузки. Это свойство широко применяетсяпри визуальном контроле правильности построения эпюры изгибающих моментов.
Пример 2.
Анализ новой задачи вновь приводит к таким выводам:
- данная конструкция является консольной балкой;
- определение опорных реакций в такой конструкции необязательно;
- построение эпюры моментов следует начинать со свободного конца;
- число характерных участков равно двум (см. стр.10).
Вновь пронумеруем границы характерных участков. Расчет начинаем с участка 1-2. Для этого вновь прибегнем к уже известному приему – мысленно установим в сечении, совпадающем с окончанием первого участка, жесткую заделку (рис.27,а). При этом участок 1-2 становится аналогом второго частного случая (см. рис.21), поэтому характер эпюры и величина изгибающего момента правее точки 2 известны (рис.27,б).
3
|
На следующем шаге вновь ликвидируем условную заделку правее сечения 2 и переставляем ее в сечение 3 (рис28,а). При этом балка в сечении 2 восстанавливает свои кинематические характеристики. Далее рассматриваем участок 2-3. Приложим к нему сосредоточенный момент М=17, отложенный выше нейтральной оси в сечении правее т.2 (см. рис.27,б) и растягивающий, таким образом, верхние волокна. Кроме того, на участке 2-3, прикладываем в точке 2 (рис.28,б) сосредоточенную силу Р1=7. Исходя из принципа независимости действия сил, вычислим величину изгибающего момента в сечении 3. Независимое действие М=17 соответствует частному случаю 2 (рис.21), приводя к растяжению верхних волокон. Отложим ординату 17 выше нейтральной оси (рис.28,в); независимое действие сосредоточенной силы Р1=7 приводит к растяжению нижних волокон (по аналогии с частным случаем 1 на рис.18). А величина созданного ею момента в заделке 3
- 16 -
равна М3=Р×L=7×4=28. Отложим эту ординату ниже нейтральной оси. Алгебраическая сумма воздействий (в данном случае изгибающих моментов) в заделке 3 равна М3=28-17=11. Этот момент растягивает нижние волокна. В пределах характерного участка 2-3 эпюра изгибающих моментов прямолинейна. Результат рассмотрения участка 2-3 – на рис.26,г. На рис. 26,д изображена полная эпюра моментов для рассмотренного случая загружения консольной балки системой нагрузок.
177
|
17
|
111
|
3
|
3
|
3
|
При визуальном контроле построенной эпюры с удовлетворением отмечаем наличие перелома под действием сосредоточенной силы Р1, что указывает на правильность наших действий.
Дата добавления: 2015-08-17; просмотров: 47 | Нарушение авторских прав
mybiblioteka.su - 2015-2024 год. (0.009 сек.)