Читайте также:
|
|
32. Теорема о непрерывной сложной функции.
ТЕОР: Пусть функции Z=j(x) непрерывна в точке X0, а функция Y=f(z) непрерывна в точке Z0. Тогда сложная функция Y=f(j(x)) непрерывна в точке X0.
Док-во: Пусть Х1, Х2, Х3,…, Хn,… - " последовательность из множества Х, сходится к точке Х0. Тогда в силу непрерывности функции Z=j(x) в точке Х0 имеем lim Zn = lim j(Xn) = j(X0) = Z0 при n®¥, то есть соответствующая последовательность точек Z1, Z2, Z3,…, Zn,… сходится к точке Z0. В силу непрерывности функции f(z) в точке Z0 имеем lim f(Zn) = f(Z0), т. е. lim f[j(Xn)] = f[j(X0)]. Получаем, что предел функции f(j(x)) в точке Х0 равен значению функции в точке Х0. Þ Функция непрерывна.
33. Теорема о непрерывной обратной функции.
ТЕОР: Пусть функция Y=f(x) определена, строго монотонна и непрерывна на некотором промежутке Х и пусть У – множество ее значений. Тогда на множестве У обратная функция X=j(y) однозначна, строго монотонна и непрерывна.
ЗАМ: если обратная функция X=j(y) однозначна, то, очевидно, что f – обратная функция для функции j, говорят, что f и j – взаимообратные.
34. Понятие производной.
Приращением функции Y=f(x) в точке X0, отвечающим приращению аргумента DX, будем называть число DY=f(X0+DX) – f(X0).
Производной функции Y=f(x) в данной точке X0 называется предел при DX®0 отношения приращения функции к приращению аргумента. При условии, что он существует – конечная производная. Если он равен бесконечности, то функция имеет бесконечную производную. Если функция имеет конечную производную в каждой точке множества Х, то можно рассматривать производную как функцию определенную на множестве Х.
Дата добавления: 2015-08-02; просмотров: 63 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Точка А – точка разрыва II рода, если в этой точке функция не имеет по крайней мере одного из пределов (правого или левого) или хотя бы один из односторонних пределов бесконечен. | | | Геометрический смысл производной. |