Читайте также: |
|
Рис. 7.10. Схема электрохимического хонингования цилиндра:
1 - хонинговапьная головка; 2 - заготовка цилиндра; 3 - изолятор; 4 - ванна; 5 - стол хонинговального станка
Отделочную обработку поверхностей заготовок можно проводить электрохимическим хонингованием (рис. 7.10). Кинематика процесса соответствует хо-нингованию абразивными головками. Отличие состоит в том, что заготовку устанавливают в ванне, заполненной электролитом, и подключают к аноду. Хонинго-вальную головку подключают к катоду. Вместо абразивных брусков в головке установлены деревянные или пластмассовые. Продукты анодного растворения удаляются с обрабатываемой поверхности брусками при вращательном и возвратно-поступательном движениях хонинговаль-ной головки. Чтобы продукты анодного растворения удалялись более активно, в электролит добавляют абразивные материалы. После того как удаление припуска с обрабатываемой поверхности закончено, осуществляют процесс "выхаживания" поверхности при выключенном электрическом токе для полного удаления анодной пленки с обработанной поверхности. Электрохимическое хонингование обеспечивает более низкую шероховатость поверхности, чем хонингование абразивными брусками. Поверхность получает зеркальный блеск. Производительность электрохимического хонингования в 4... 5 раз выше производительности механического хонингования.
4. АНОДНО-МЕХАНИЧЕСКАЯ ОБРАБОТКА
Анодно-механическая обработка основана на сочетании электротермических и электромеханических процессов и занимает промежуточное место между электроэрозионными и электрохимическими методами. Обрабатываемую заготовку подключают к аноду, а инструмент - к катоду. В зависимости от характера обработки и вида обрабатываемой поверхности в качестве инструмента используют металлические диски, цилиндры, ленты, проволоку. Обработку ведут в среде электролита, которым чаще всего служит водный раствор жидкого натриевого стекла. Заготовке и инструменту задают такие же движения, как при обычных методах механической обработки резанием. Электролит подают в зону обработки через сопло (рис. 7.11).
6 +
Рис. 7.12. Примеры анодно-механической обработки
При пропускании через раствор электролита постоянного электрического тока происходит процесс анодного растворения, как при электрохимической обработке. При соприкосновении инструмента-катода с микронеровностями обрабатываемой поверхности заготовки-анода происходит процесс электроэрозии, присущий электроискровой обработке. Кроме того, при пропускании электрического тока металл заготовки в точке контакта с инструментом разогревается так же, как при электроконтактной обработке, и материал заготовки размягчается. Продукты электроэрозии и анодного растворения удаляются из зоны обработки при относительных движениях инструмента и заготовки.
Анодно-механическим методом обрабатывают заготовки из всех токопроводя-щих материалов, высокопрочных и труднообрабатываемых металлов и сплавов, вязких материалов.
В станках для анодно-механической обработки используют системы ЧПУ. По программе осуществляется управление скоростями движений заготовки и инструмента, поддерживается постоянство зазора в рабочем пространстве между ними, задаются параметры электрического режима при переходе с черновой обработки на чистовую.
Анодно-механическим методом (рис. 7.12) разрезают заготовки на части (а), прорезают пазы и щели, обтачивают поверхности тел вращения (б), шлифуют плоские поверхности и поверхности, имеющие форму тел вращения (в), полируют поверхности, затачивают режущий инструмент.
5. ХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ
Сущность химической обработки заготовок состоит в направленном разрушении металлов и сплавов травлением их в растворах кислот и щелочей.
Перед травлением обрабатываемые поверхности заготовок тщательно очищают. Поверхности, не подлежащие обработке, защищают химически стойкими покрытиями (окрашивают лаками и красками, применяют химические и гальванические покрытия, светочувствительные эмульсии).
Подготовленные к обработке заготовки опускают в ванну с раствором кислоты или щелочи в зависимости от материала, из которого они изготовлены. Незащищенные поверхности заготовок подвергают травлению. Чтобы скорость травления была постоянной, а это позволяет определять время удаления припуска, концентрацию раствора поддерживают неизменной. В целях интенсификации процесса травления раствор подогревают до температуры 40... 80 "С. После обработки заготовки промывают, нейтрализуют, еще раз промывают горячим содовым раствором и удаляют защитные покрытия.
Химическим травлением получают местные утонения на нежестких заготовках, ребра жесткости, извилистые канавки и щели, "вафельные" поверхности, обрабатывают поверхности, труднодоступные для режущего инструмента.
Химико-механическим методом обрабатывают заготовки из твердых сплавов. Заготовки приклеивают специальными клеями к пластинам и опускают в ванну, заполненную суспензией, состоящей из раствора сернокислой меди и абразивного порошка. В результате обменной химической реакции на поверхностях заготовок выделяется рыхлая металлическая медь, а кобальтовая связка твердого сплава переходит в раствор в виде соли, освобождая тем самым зерна карбидов титана, вольфрама и тантала.
Медь вместе с карбидами сошлифовы-вается присутствующим в растворе абразивным порошком. В качестве инструмента используют чугунные диски или пластины. Карбиды удаляются в результате относительных движений инструмента и заготовок.
Химико-механическую обработку применяют для разрезания и шлифования пластинок из твердого сплава, доводки твердосплавного инструмента.
6. УЛЬТРАЗВУКОВАЯ ОБРАБОТКА
Ультразвуковая обработка материалов -разновидность механической обработки -основана на разрушении обрабатываемого материала абразивными зернами под ударами инструмента, колеблющегося с ультразвуковой частотой. Источником энергии служат ультразвуковые генераторы тока с частотой 16... 30 кГц. Инструмент получает колебания от ультразвукового преобразователя с сердечником из магнито-стрикционного материала. Эффектом маг-нитострикции обладают никель, железо-никелевые сплавы (пермендюр), железо-алюминиевые сплавы (альфер), ферриты.
В сердечнике из магнитострикцион-ного материала при наличии электромагнитного поля домены* разворачиваются
Домены - ферромагнитные области в ферромагнитных кристаллах, в которых атомные магнитные моменты ориентированы параллельно.
в направлении магнитных силовых линий, что вызывает изменение размера поперечного сечения сердечника и его длины. В переменном магнитном поле частота изменения длины сердечника равна частоте колебаний тока. При совпадении частоты колебаний тока с собственной частотой колебаний сердечника наступает резонанс и амплитуда колебаний торца сердечника достигает 2... 10 мкм. Для увеличения амплитуды колебаний на сердечнике закрепляют резонансный волновод переменного поперечного сечения, что увеличивает амплитуду колебаний до 40... 60 мкм.
На волноводе закрепляют рабочий инструмент-пуансон. Под инструментом устанавливают заготовку и в зону обработки поливом или под давлением подают абразивную суспензию, состоящую из воды и абразивного материала. В качестве абразивных материалов используют карбид бора, карбид кремния, электрокорунд. Наибольшую производительность получают при использовании карбидов бора. Инструмент поджимают к заготовке силой 1... 60 Н.
Заготовку 3 помещают в ванну / под инструментом 4 (рис. 7.13). Инструмент устанавливают на волноводе 5, который закреплен в магнитострикционном сер
дечнике 7, смонтированном в кожухе б, сквозь который прокачивают воду для охлаждения сердечника. Для возбуждения колебаний сердечника магнитострикцион-ного преобразователя служат генератор 8 ультразвуковой частоты и источник постоянного тока 9. Абразивную суспензию 2 подают под давлением по патрубку 10 насосом 11, забирающим суспензию из резервуара 12. Прокачивание суспензии насосом исключает оседание абразивного порошка на дно ванны и обеспечивает подачу в зону обработки абразивного материала.
Кавитационные явления в жидкости способствуют интенсивному перемещению абразивных зерен под инструментом, замене изношенных зерен новыми, а также разрушению обрабатываемого материала.
Ультразвуковым методом обрабатывают хрупкие твердые материалы: стекло, керамику, ферриты, кремний, кварц, драгоценные минералы, в том числе алмазы, твердые сплавы, титановые сплавы, вольфрам.
Метод используют для профилирования наружных поверхностей, гравирования, изготовления деталей сложной формы. Движениями подачи для указанных видов обработки являются вертикальная подача инструмента при обработке отверстий и полостей, продольная подача заготовки при разрезании ее на части, продольная и поперечная подачи заготовки при разрезании ее по сложному контуру. Для управления движениями заготовки и вертикальной подачей инструмента используют системы программного управления.
Ультразвуковым методом обрабатывают (рис. 7.14) сквозные и глухие отверстия любой формы поперечного сечения (а, б), фасонные полости (в), разрезают заготовки на части (г), прошивают отверстия с криволинейными осями, нарезают резьбы.
Рабочие инструменты для обработки отверстий диаметром 0,5... 20 мм выполняют сплошными: диаметром 20... 100 мм -полыми (обработка по способу трепанации). Пазы долбят, а заготовки разрезают ножевидными пуансонами; внутренние полости обрабатывают пуансонами, форма торцов которых обратна форме обрабатываемой поверхности. Инструменты изготовляют из закаленных, но вязких материалов.
Точность размеров и шероховатость поверхностей, обработанных ультразвуковым методом, зависят от зернистости используемых абразивных материалов и соответствуют точности и шероховатости поверхностей, обработанных шлифованием.
Использование ультразвуковых колебаний оказалось эффективным и при обычных способах механической обработки (точении, фрезеровании и др.). Наложение ультразвуковых колебаний малых амплитуд (2... 5 мкм) на режущий инструмент (например, резец) в направлении главного движения резания существенно изменяет характер стружкообразования. Значительно снижается зона первичной и вторичной деформации срезаемого слоя металла, уменьшаются глубина и степень наклепа обработанной поверхности. Ультразвуковые колебания почти полностью устраняют процессы наростообразования. Все это приводит к улучшению условий резания, снижению сил трения и повышению качества поверхностного слоя.
Наиболее эффективным оказалось применение ультразвуковых колебаний малой амплитуды (2... 5 мкм) при обработке жаропрочных, тугоплавких, титановых сплавов и других материалов, характеризующихся плохой обрабатываемостью резанием.
Эффективным оказалось также применение ультразвуковых колебаний при ЭФЭХ методах обработки. Так, рациональное совмещение электрохимической и ультразвуковой обработки твердых сплавов позволяет в десятки раз повысить производительность труда и в несколько раз снизить износ инструмента и удельный расход электроэнергии.
7. ЛУЧЕВЫЕ МЕТОДЫ ОБРАБОТКИ
К лучевым методам формообразования поверхностей деталей машин относят электронно-лучевую и светолучевую (лазерную) обработку.
Электронно-лучевая обработка основана на превращении кинетической энергии направленного пучка электронов в тепловую. Высокая плотность энергии сфокусированного электронного луча позволяет обрабатывать заготовки за счет нагрева, расплавления и испарения материала с узколокального участка.
Схема установки для электроннолучевой обработки (электронная пушка) приведена на рис. 5.15.
При размерной обработке заготовок установка работает в импульсном режиме, что обеспечивает локальный нагрев заготовки. В зоне обработки температура достигает 6000 °С, а на расстоянии 1 мкм от пятна фокусировки не превышает 300 °С. Продолжительность импульсов и интервалы между ними подбирают так, чтобы за один цикл успел нагреться и испариться только металл, находящийся под непосредственным воздействием луча. Длительность импульсов составляет 10^*... Ю-6 с, а частота 50... 6000 Гц.
Метод целесообразен при создании локальной концентрации высокой энергии, широком регулировании и управлении тепловыми процессами. Вакуумные среды позволяют обрабатывать заготовки из лег-коокисляющихся активных материалов. С помощью электронного луча можно наносить покрытия на поверхности заготовок в виде пленок толщиной от нескольких микрометров до десятых долей миллиметра.
Электронно-лучевой метод перспективен при обработке отверстий диаметром 1 мм... 10 мкм, прорезании пазов, резке заготовок, изготовлении тонких пленок и сеток из фольги. Обрабатывают заготовки из труднообрабатываемых металлов и сплавов, а также из неметаллических материалов: рубина, керамики, кварца, полупроводниковых материалов.
Светолучевая (лазерная) обработка основана на тепловом воздействии светового луча высокой энергии на поверхность обрабатываемой заготовки. Источником светового излучения служит лазер - оптический квантовый генератор (ОКГ).
Энергия светового импульса ОКГ обычно невелика и составляет 20... 100 Дж, но она выделяется в миллионные доли секунды и сосредоточивается в луче диаметром -0,01 мм. В фокусе диаметр луча
лазера составляет всего несколько микрометров, что обеспечивает температуру в зоне воздействия с металлом 6000... 8000 °С. В результате этого поверхностный слой материала заготовки мгновенно расплавляется и испаряется.
Лазерную обработку применяют для прошивания сквозных и глухих отверстий, разрезки заготовок на части, вырезания заготовок из листовых материалов, проре-зания пазов. Этим методом можно обрабатывать заготовки из любых материалов, включая самые твердые и прочные. Например, лазерную обработку отверстий применяют при изготовлении диафрагм для электронно-лучевых установок. Диафрагмы изготовляют из вольфрамовой, танталовой, молибденовой или медной фольги толщиной ~ 50 мкм при диаметре отверстия 20... 30 мкм. С помощью лазерного луча можно выполнить контурную обработку по аналогии с фрезерованием, т.е. обработку поверхностей по сложному периметру. Перемещениями заготовки относительно луча управляет система ЧПУ, что позволяет прорезать в заготовках сложные криволинейные пазы или вырезать из заготовок детали сложной геометрической формы.
8. ПЛАЗМЕННАЯ ОБРАБОТКА
Сущность обработки состоит в том, что плазму направляют на обрабатываемую поверхность (см. разд. V, гл. 2, п. 8).
Плазменным методом обрабатывают заготовки из любых материалов, выполняя прошивание отверстий, вырезку заготовок из листового материала, строгание, точение. При прошивании отверстий, разрезке и вырезке заготовок головку устанавливают перпендикулярно к поверхности заготовки, при строгании и точении - под углом 40... 60°.
Принципиально новым методом изготовления деталей является плазменное напыление с целью получения заданных размеров. В камеру плазмотрона подаются порошкообразный конструкционный материал и одновременно инертный газ под высоким давлением. Под действием дугового разряда конструкционный материал плавится и переходит в состояние плазмы. Струя плазмы сжимается в плазмотроне плазмообразующим газом. Выходя из сопла, струя плазмы направляется на обрабатываемую заготовку. Системы вертикальной и горизонтальной разверток обеспечивают перемещение струи по поверхности обработки.
Плазменное напыление применяют и для получения деталей из напыляемого материала. Детали получаются в результате наращивания микрочастиц конструкционного материала в определенных местах экрана. Иногда вместо экрана используют тонкостенную заготовку, на которую направляется плазма, и происходит наращивание металла.
ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ
1. Какова физическая сущность электроэрозионных методов обработки материалов?
2. Каковы физико-механические свойства материала заготовки, обрабатываемой ультразвуком?
3. Назовите область применения электрохимической обработки.
4. Объясните физическую сущность эффекта магнитострикции.
5. Назовите области применения анодно-механической обработки.
РАЗДЕЛО ИЗГОТОВЛЕНИЕ ДЕТАЛЕЙ О ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ
Глава I Физико-технологические основы
получения композиционных материалов
1. ХАРАКТЕРИСТИКА КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ
Развитие всех отраслей промышленности, а также задача повышения качества выпускаемых изделий потребовали создания новых конструкционных материалов. Авиация, ракетно-космическая техника, ядерная энергетика и многие другие отрасли нуждаются в материалах, характеризующихся высокими прочностью, термостойкостью и жаропрочностью, малой плотностью, теплопроводностью и электропроводимостью, диэлектрическими, магнитными и другими специальными физическими свойствами. Объединение различных ценных свойств отдельных материалов позволило создать единое целое - композицию. Современное материаловедение уже добилось значительных успехов в исследовании и разработке композиционных материалов (КМ).
На современном этапе понятие композиционного материала должно удовлетворять следующим критериям: композиция должна представлять собой объемное сочетание хотя бы двух химически разнородных материалов с четкой границей раздела между этими компонентами (фазами) и характеризоваться свойствами, которых не имеет никакой из ее компонентов в отдельности. Композицию получают путем введения в основной материал (матрицу) определенного количества другого материала, который добавляется в целях получения специальных свойств. КМ может состоять из двух, трех и более компонентов. Размеры частиц входящих компонентов могут колебаться в широких пределах - от сотых долей микрометра (для порошковых наполнителей) до нескольких миллиметров (при использовании волокнистых наполнителей).
Практически всякий современный материал представляет собой композицию, поскольку материалы редко используются в чистом виде. Действительно, почти все металлические сплавы содержат несколько фаз, которые либо создаются специально (для придания материалу заданных эксплуатационных и технологических свойств), либо образуются в результате наличия в металле вредных примесей.
Отличие большинства КМ от традиционных материалов в том, что процесс получения КМ технологически совмещается с процессом изготовления изделия.
Проектирование изделия из КМ начинается с конструирования самого материала - выбора его компонентов и назначения оптимальных технологических процессов производства. Особенность создания конструкций из КМ в отличие от конструкций из традиционных материалов заключается в том, что конструирование материала, разработка технологического процесса изготовления и проектирование самой конструкции - это единый взаимосвязанный процесс.
Физико-механические свойства КМ в зависимости от концентрации компонентов, их геометрических параметров и ориентации, а также технологии изготовления могут меняться в очень широких пределах. Тем самым открывается возможность специального создания (конструирования) материала с заданными свойствами для определенного изделия.
С развитием теории и технологии КМ стало возможным создавать изделия, работающие в экстремальных условиях. Так, при разработке космического корабля многоразового использования "Буран" требовалось создать легкую конструкцию, способную длительно работать в исключительно тяжелых условиях: при сверхвысоких динамических и акустических нагрузках от мощных ракетных двигателей и сверхзвукового потока воздуха при подъеме; охлаждении в открытом космосе и нагреве облицовки корабля до температуры свыше тысячи градусов при входе в плотные слои атмосферы при посадке. Решения этих задач удалось достичь благодаря использованию конструкторами нетрадиционных новых, в том числе и композиционных, материалов со специальными свойствами.
Наглядным подтверждением широкого применения КМ является использование углепластиков в авиации (рис. 8.1). Аналогичная тенденция применения КМ характерна и для других отраслей промышленности, так как это неразрывно связано с повышением технико-экономических показателей выпускаемых изделий.
2. КЛАССИФИКАЦИЯ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ
Все КМ условно можно классифицировать по следующим признакам: материалу композиции, типу арматуры и ее ориентации, способу получения композиции и изделий из них, по назначению.
В зависимости от материала матрицы КМ можно разделить на следующие основные группы: композиции с металлической матрицей - металлические композиционные материалы (МКМ), с полимерной - полимерные композиционные материалы (ПКМ), с резиновой - резиновые композиционные материалы (РКМ) и с керамической - керамические композиционные материалы (ККМ).
Название ПКМ обычно присваивают в зависимости от армирующего материала. Например, ПКМ, армированные стеклянными волокнами, называют стеклопластиками. Аналогично получили свои названия металлопластики, асбестопластики, углепластики, боропластики и т.д.
По типу арматуры и ее ориентации КМ подразделяют на две основные группы: изотропные и анизотропные.
Изотропные КМ имеют одинаковые свойства во всех направлениях. К этой группе относят КМ с порошкообразными наполнителями. К числу изотропных условно относят и КМ, армированные короткими (дискретными) частицами. КМ при этом получаются квазиизотропными, т.е. изотропными в объеме всего изделия, но анизотропными в микрообъемах.
У анизотропных материалов свойства зависят от направления армирующего материала. Их подразделяют на однонаправленные, слоистые и трехмерно-направленные. Анизотропия материала закладывается конструктором для получения КМ с заданными свойствами. Однонаправленные КМ чаще всего проектируют для изготовления изделий, работающих на растяжение. Слоистые КМ получают путем продольно-поперечной укладки с правильным чередованием слоев. Трехмерно-направленное армирование обычно достигается за счет использования "сшитых" в поперечном направлении армирующих тканей, сеток и т.п. Кроме такой анизотропии образуется еще технологическая анизотропия, возникающая при пластическом деформировании изотропных материалов (металлов).
В последнее время находят широкое применение так называемые гибридные КМ.
Гибридными называют КМ, содержащие в своем составе три или более компонентов. В зависимости от распределения компонентов гибридные КМ обычно делят на следующие классы: однородные КМ (рис. 8.2, а), с равномерным распределением каждого армирующего компонента по всему объему композиции; линейно неоднородные КМ с объединением отдельных волокон в жгуты (рис. 8.2, б);
КМ с плоскостной неоднородностью (рис. 8.2, в), в которых волокна каждого типа образуют чередующиеся слои, и мак-ронеоднородные КМ, когда разнородные волокна образуют зоны, соизмеримые с характерным размером изделия из КМ (рис. 8.2, г). При этом возможно использовать структуру типа "оболочка - сердцевина". Такое сочетание компонентов рассматривается как наиболее перспективное. Конструктор, проектируя изделие из КМ, армирующие волокна (например, из углерода, бора и др.) помещает в оболочку из металлической проволоки, сетки, фольги и т.п. Такие "полуфабрикаты" характеризуются высокой технологичностью при изготовлении изделий из волокнистых КМ. Помимо рассмотренных возможны и другие сочетания компонентов в композиции.
По способу получения полимерные и резиновые КМ разделяют на литейные и прессованные. Металлические КМ аналогично делят на литейные и деформируе-
мые. Литейные получают путем пропитки арматуры расплавленным матричным материалом (сплавом). Для получения деформируемых МКМ применяют спекание, прессование, штамповку, ковку на молотах и др.
По назначению КМ разделяют на общеконструкционные, термостойкие, пористые, фрикционные и антифрикционные и т.д.
3. ТРЕБОВАНИЯ,
ПРЕДЪЯВЛЯЕМЫЕ К АРМИРУЮЩИМ И МАТРИЧНЫМ МАТЕРИАЛАМ
Армирующие материалы подразделяют на порошкообразные и волокнистые. Порошковые материалы должны удовлетворять требованиям по химическому составу, размерам и форме отдельных фракций, по технологическим свойствам (насыпная масса, текучесть, прессуемость, спекаемость) при изготовлении изделий порошковой металлургией. Они не должны содержать загрязнений, влаги, масел и других примесей, должны храниться в условиях, исключающих окислительные процессы на поверхности порошковых зерен.
Армирующие волокна, используемые для получения КМ, должны иметь следующие свойства: малую плотность, высокую температуру плавления, минимальную растворимость в материале матрицы, высокую прочность во всем интервале рабочих температур, высокую химическую стойкость, технологичность, отсутствие фазовых превращений в зоне рабочих температур, отсутствие токсичности при изготовлении и эксплуатации. Применяют в основном три вида волокон: нитевидные кристаллы, металлическую проволоку, неорганические и поликристаллические волокна.
Нитевидные кристаллы ("усы") рассматривают как наиболее перспективный материал для армирования металлов, полимеров, керамики. Сверхвысокая прочность в широком диапазоне рабочих температур, малая плотность, химическая инертность ко многим материалам матрицы и ряд других свойств делают их незаменимыми в качестве армирующих материалов. Однако широкое их внедрение сдерживается пока несовершенством технологии их получения в промышленных масштабах, сложностью ориентации их в материале матрицы, сложностью технологии деформирования изделий из композиций с нитевидными кристаллами и др.
Металлическая проволока из высокопрочной стали, вольфрама, молибдена и других металлов имеет меньшую прочность, чем нитевидные кристаллы. Однако ее выпускают промышленно в больших количествах и в связи с более низкой стоимостью широко применяют в качестве арматуры, особенно для КМ на металлической основе.
Неорганические и поликристаллические волокна имеют малую плотность, высокую прочность и химическую стойкость. Широко применяют углеродные, борные, стеклянные и другие волокна для армирования пластмасс и металлов.
Основное назначение наполнителей -придание КМ специальных свойств. Например, волокнистые наполнители вводят с целью получения максимальных прочностных характеристик.
Матрица в армированных композициях является основой, придает изделию форму и делает материал монолитным. Материал матрицы должен позволять композиции воспринимать внешние нагрузки. Матрица принимает участие в создании несущей способности композиции, обеспечивая передачу силы на волокна. При нагружении за счет пластичности матрицы силы от разрушенных или дискретных (коротких) волокон передаются соседним волокнам. Передача нагрузки зависит прежде всего от качества соединений, т.е. от хорошей адгезии между компонентами КМ. Без этого невозможны передача нагрузки волокон и, следовательно, армирование.
Получению качественного соединения способствуют взаимная диффузия с образованием твердого раствора; поверхностное химическое взаимодействие между компонентами композиции; отсутствие на поверхности раздела каких-либо загрязняющих слоев.
При изготовлении композиции в жидкой фазе материал матрицы должен смачивать армирующий материал (волокно). Качество соединения зависит от смачиваемости волокон материалом матрицы, что обусловливается определенной степенью физического и химического сродства компонентов. Процесс смачивания сопровождается чаще всего частичным растворением волокон в материале матрицы или их химическим взаимодействием. Следовательно, смачивание почти всегда приводит к поверхностному разрушению волокна. Но без химического взаимодействия невозможно смачивание.
Смачивание зависит также от взаимного физического сродства компонентов, т.е. от соотношения их поверхностных энергий (рис. 8.3).
а) б) |
Способность жидкой матрицы смачивать или не смачивать наполнитель зависит от соотношения сил поверхностного натяжения на границах твердая фаза -жидкость (ут _ ж), жидкость - пар (уж _ „) и твердая фаза - пар (ут_ „).
Дата добавления: 2015-07-25; просмотров: 74 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
I Притирка 14 страница | | | I Притирка 16 страница |