Читайте также: |
|
Если ут _ п > ут _ ж + уж _ п cos 9, смачивание удовлетворительное, и наоборот, если Ут - ж > Yt - п + Уж - п cos 9, смачивание неудовлетворительное. Исследование смачивания обычно проводят путем нанесения капли жидкого материала матрицы на подложку из материала наполнителя. О смачиваемости судят по величине краевого угла 0 (рис. 8.3, а, б).
Смачивание может быть улучшено средствами, влияющими на первоначальное равновесие между силами поверхностного натяжения. Наиболее эффективные способы улучшения смачиваемости - нанесение на армирующие волокна специальных покрытий и введение в материал матрицы специальных легирующих добавок. Улучшить смачивание при пропитке волокон металлическими расплавами можно, применив ультразвуковую обработку жидкой фазы. В отдельных случаях положительный эффект может быть достигнут за счет повышения температуры расплава и увеличения времени нахождения композиции в жидком состоянии.
Таким образом, создавая новые КМ жидкофазными способами, следует принимать во внимание, что материал матрицы должен полностью смачивать армирующие волокна, не должен разъедать или иным способом разрушать волокна. Кроме того, матрице отводится роль защитного покрытия, предохраняющего волокна от механических повреждений и окисления.
ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ
1. Что понимают под КМ и каковы предпосылки их создания?
2. В чем заключается технологическая особенность получения КМ?
3. По каким признакам классифицируют
КМ?
4. Какие основные требования предъявляют к армирующим и матричным материалам?
5. Почему уделяют большое внимание вопросу смачивания и какими способами можно улучшить смачивание армирующих элементов матричным материалом?
Глава II Изготовление изделий
из металлических композиционных материалов
1. ВОЛОКНА
ДЛЯ АРМИРОВАНИЯ
КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ
Для армирования КМ с металлической матрицей используют освоенные промышленностью высокопрочные волокна углерода, бора, карбида кремния и вольфрама, оксидов алюминия и циркония, проволоку из стальных, вольфрамовых и молибденовых сплавов, а также нитевидные кристаллы ("усы").
Волокна углерода и бора используют обычно для армирования легких сплавов на основе алюминия и магния. Изделия из этих КМ характеризуются высокими прочностью и жесткостью и могут длительно эксплуатироваться при температурах 300... 450 °С. Волокна бора с барьерным покрытием из карбида кремния могут успешно эксплуатироваться при температурах 600 °С и даже до 800 °С при соответствующем материале матрицы.
Волокна карбида кремния и вольфрама предназначены для армирования жаропрочных КМ на основе никелево-хромистых сплавов с рабочими температурами 1100... 1300 °С.
Термостойкие и жаропрочные волокна из оксидов алюминия и циркония могут быть эффективными при армировании КМ, длительно работающих при температурах 1400... 1600 °С.
Проволоку из стальных, вольфрамовых и молибденовых сплавов широко используют для армирования высокопрочных КМ.
Нитевидные кристаллы весьма перспективны в качестве армирующего материала для получения высокопрочных и жаропрочных КМ.
Волокна углерода относятся к числу перспективных армирующих элементов в связи с низкой плотностью (1400... 2000 кг/м3), высокими пределом прочности при растяжении (до 3500 МПа), модулем упругости (до 700 000 МПа) и малым диаметром волокон (5... 12 мкм).
Для получения волокон углерода в качестве сырья используют органические волокна из вискозы (целлюлозные искусственные волокна) и полиакрилнитрила (поливиниловое синтетическое волокно), которые получают выдавливанием полимера в вязкотекучем состоянии через фильеры определенного размера. В качестве сырья используют также пеки из каменноугольной смолы или нефти.
Волокна углерода получают путем последовательного нагрева исходного полимерного волокна до температур, превышающих температуру деструкции полимера. На первом этапе исходное сырье нагревают до температуры 200... 300 °С. При этом волокна окисляются и возникают поперечные связи между макромолекулами. На втором этапе волокна нагревают до температуры 1000... 1500 °С, при этом волокно уже на 80... 95 % состоит из элементарного углерода. После термообработки (при 1500... 3000 °С) получают волокна, содержащие 98... 99 % углерода, закристаллизовавшегося в систему, близкую к графиту.
Например, процесс получения волокон углерода из полиакрилнитрильного сырья проводят по следующей схеме: нагрев исходного волокна до температуры 220 °С и выдержка в течение 20 ч, затем температуру повышают до 980 °С и выдерживают в атмосфере водорода 24 ч; на следующем этапе волокно выдерживают в течение 2 ч при температуре 2480... 2500 °С и создают принудительную вытяжку волокна в течение 15... 20 мин. Заключительную операцию термообработки проводят при температуре 2700 °С в течение 15 мин. Вытягивание волокон углерода в процессе их производства улучшает ориентацию структуры и значительно повышает прочность и модуль упругости.
Волокна углерода имеют относительно высокую химическую стойкость к атмосферным условиям и некоторым кислотам (серной, азотной, соляной), что определяет их долговечность при хранении, а также долговечность КМ на их основе. Термостойкость при длительной эксплуатации не превышает 400 °С. К недостаткам углеродных волокон следует отнести низкую прочность на сжатие, химическую активность при взаимодействии с расплавленными металлическими матрицами и малую смачиваемость, особенно с полимерными матрицами.
Волокна бора характеризуются низкой плотностью (2400... 3000 кг/см3); прочностью при растяжении (до 3800 МПа) и модулем упругости (до 400 000 МПа). Их получают осаждением бора из газовой смеси водорода и треххлористого бора на нагреваемую вольфрамовую проволоку (диаметром 10... 12 мкм). В результате осаждения образуется сердечник из бори-дов вольфрама (диаметром 15... 17 мкм), вокруг которого располагается слой поликристаллического бора. Сердечник образуется вследствие диффузии и взаимодействия бора с вольфрамовой проволокой. Поэтому в волокнах бора существует явно выраженная поверхность раздела между оболочкой и сердцевиной. Прочность волокон во многом зависит от появляющихся дефектов в процессе их получения. Снижение прочности в основном связано с появлением локальных дефектов структуры борного слоя в виде крупных кристаллов, инородных включений, трещин, пустот и др. Эти дефекты, имеющие технологическое происхождение, могут располагаться на поверхности волокон, в борном слое, в сердцевине и на границе раздела между ними.
В промышленных условиях возможно изготовление волокон диаметром 75... 200 мкм. Производительность процесса во многом зависит от температуры осаждения. При пониженных температурах (980 °С) скорость осаждения невелика. Однако повышение температуры (до 1200... 1315 °С) одновременно приводит к росту крупных кристаллов, что заметно снижает прочность волокон. Для повышения термостойкости волокон на бор тем же способом наносят тонкий слой (2... 6 мкм) карбидов кремния или бора.
В процессе получения волокон бора в качестве подложки могут быть использованы также углеродные нити.
Высокая температура плавления бора (2050 °С) определяет как термостойкость волокон бора, так и высокую поверхностную энергию, необходимую для обеспечения хорошей смачиваемости. Это оказывает положительное влияние на технологические свойства волокон бора.
Волокна карбида кремния определяются следующими физико-механическими характеристиками: плотностью 3200... 3500 кг/м3, прочностью при растяжении 1700... 2500 МПа, модулем упругости 450000... 480000 МПа. Они жаростойки и жаропрочны и поэтому весьма перспективны для создания КМ на металлической основе с высокотемпературными характеристиками.
Волокна карбида кремния получают в вертикальных реакторах по аналогичной схеме, как и при получении волокон бора. Сердечником при этом служат вольфрамовая проволока или пековые моноволокна углерода. В последнем случае прочность и термостойкость волокон карбида кремния существенно повышаются из-за более низкого уровня напряжений между оболочкой и сердечником. Температура подложки при осаждении карбида кремния составляет 1100... 1200 °С. Соотношение компонентов парогазовой фазы подбирают в зависимости от требуемого диаметра волокна, диаметра нити подложки и размеров реактора. Промышленностью освоен выпуск непрерывных волокон карбида кремния диаметром 80... 120 мкм.
Высокая химическая стойкость к атмосферным воздействиям, практическое отсутствие реакции между материалами матрицы и волокнами и хорошая смачиваемость позволяют использовать эти волокна без нанесения барьерных покрытий при изготовлении КМ с металлической матрицей.
Волокна из оксидов алюминия, циркония характеризуются высокими прочностью и теплостойкостью. В настоящее время осваивается промышленный выпуск волокон из этих материалов.
Металлическая проволока - наиболее доступный и дешевый вид волокон, используемых для армирования КМ. Промышленностью уже давно освоено производство проволоки из различных металлов и сплавов. Для армирования КМ используют проволоки из высокоуглеродистых и высоколегированных сталей, характеризующихся высокими физико-механическими свойствами. В последнее время широко используют проволоки из вольфрамовых и молибденовых сплавов, специально выпускаемые для армирования КМ.
Нитевидные кристаллы ("усы") -тонкие короткие волокна с монокристаллической структурой. Технологически возможно получение кристаллов диаметром до 10 мкм и длиной до 10 мм. Характерно, что прочность "усов" резко возрастает с уменьшением диаметра. Например, нитевидный кристалл железа диаметром 3 мкм имеет прочность при растяжении более 12000 МПа, а при диаметре 10 мкм -менее 3000 МПа.
Наиболее распространенными способами получения нитевидных кристаллов являются выращивание из покрытий, выращивание в электрическом поле, осаждение из газовой фазы, химические способы.
Выращивание нитевидных кристаллов из покрытий может происходить самопроизвольно при нормальной температуре из легкоплавких металлов (цинка, олова и др.). Покрытия наносят электролитически, путем парового осаждения или погружения подложки в расплавленный металл.
В электрическом поле выращивают кристаллы из железа, меди, серебра и др. Процесс осаждения ведут при больших плотностях тока в присутствии органических примесей (глюкозы, олеиновой кислоты и др.), применяя катоды с малой рабочей поверхностью.
Процесс осаждения кристаллов из газовой фазы основан на испарении исходного вещества с последующим массопере-носом его через газовую фазу и конденсации в зоне осаждения. На рост усов оказывают влияние градиент температуры в камере, давление пара и чистота исходного вещества.
Наиболее распространены химические способы получения нитевидных кристаллов, которые нашли применение не только в лабораторной практике, но и в промышленности. Восстановление различных соединений металлов является основным химическим способом получения нитевидных кристаллов. В качестве исходных соединений используют сульфиды, оксиды и галогениды.
Для создания КМ на металлической основе в качестве армирующих элементов применяют нитевидные кристаллы таких тугоплавких соединений, как карбиды кремния, бора, оксида алюминия и др.
Благодаря совершенству структуры нитевидные кристаллы имеют высокие, близкие к теоретическим прочностные характеристики. Например, нитевидные кристаллы из карбида кремния имеют плотность 3320 кг/м3, прочность при растяжении 21 000 МПа и модуль упругости 490 000 МПа. Это свидетельствует о большой перспективности нитевидных кристаллов для армирования КМ с металлическими матрицами. Уже сейчас можно говорить о промышленных масштабах выпуска нитевидных кристаллов из карбида кремния и оксида алюминия.
Волокна в чистом виде редко применяют для армирования КМ. На волокна, жгуты, ленты тонким слоем наносят барьерные и технологические покрытия. Барьерные покрытия предназначены для защиты волокна от разрушения (деградации) в результате физико-химического взаимодействия его с матричными сплавами. Они представляют собой термодинамические стойкие химические соединения. Их фазовый состав (бориды, нитриды, карбиды, оксиды и т.д.) выбирают в зависимости от характера физико-химической и термомеханической совместимости армирующих материалов и матричных сплавов. С этой целью используют различные парогазо-фазные способы осаждения химических соединений на поверхность непрерывно движущихся волокон. Толщина покрытий составляет несколько микрометров.
Технологические покрытия предназначены для улучшения смачивания волокна матричным металлическим расплавом и повышения сил адгезии. В большинстве случаев технологические покрытия получают теми же способами, что и барьерные покрытия.
Барьерные и технологические покрытия обычно совмещают в едином цикле предварительной подготовки волокон при производстве КМ.
2. МАТЕРИАЛЫ МАТРИЦ
В качестве материалов матриц при изготовлении МКМ применяют освоенные промышленностью металлы и сплавы, а также сплавы, создаваемые специально для получения МКМ. В зависимости от требуемых эксплуатационных свойств применяют следующие материалы: легкие металлы и сплавы на основе алюминия и магния; сплавы на основе титана, меди; жаропрочные и жаростойкие сплавы на основе железа, никеля и кобальта; тугоплавкие сплавы на основе вольфрама, молибдена и ниобия.
Алюминиевые сплавы обладают хорошей пластичностью, коррозионной стойкостью, но сравнительно невысокой прочностью. /Для пропитки КМ применяют алюминиевые сплавы с хорошими литейными свойствами, например силумины, имеющие в своем составе повышенное содержание кремния. Перспективным для жаропрочных КМ является САП (спеченный алюминиевый порошок), который представляет собой алюминий, упрочненный дискретными частицами оксида алюминия. МКМ на основе САП имеют высокую жаропрочность (до 500 °С), хорошо обрабатываются давлением, резанием и обладают высокой коррозионной стойкостью.
Магний и его сплавы характеризуются низкой плотностью, относительно высокими механическими свойствами, способностью сопротивляться ударным нагрузкам и вибрациям. Кроме того, они достаточно пластичны и хорошо обрабатываются давлением.
Титановые сплавы имеют малую плотность, а по прочностным характеристикам превосходят алюминиевые и магниевые сплавы. Они имеют достаточно хорошие литейные свойства и могут обрабатываться пластическим деформированием в широком интервале температур (600... 1200 °С). /Для армирования КМ промышленностью налажен выпуск фольги из титановых сплавов толщиной 3... 200 мкм.
Медь и медные сплавы имеют высокую электропроводимость и теплопроводность. В технологическом отношении медь и ее сплавы характеризуются высокими пластическими свойствами. В большинстве случаев медные сплавы пластически деформируются в холодном состоянии.
Жаропрочные и жаростойкие сплавы получают на основе системы никель - хром с легирующими добавками вольфрама, молибдена, титана, алюминия. Они стойки к образованию окалины на поверхности в газовых средах при нагреве свыше 500 °С. Повышенная длительная прочность, высокое сопротивление ползучести и усталости достигаются за счет введения в сплавы титана и алюминия. В настоящее время сплавы на никелевой и кобальтовой основе, легированные различными элементами, способны работать при температурах до 1100 °С. Пластические свойства таких сплавов низки, поэтому их подвергают обработке давлением. МКМ из жаропрочных сплавов изготовляют преимущественно жидкофазными методами (литье, пропитка), а также методами порошковой металлургии (прессование, спекание).
Порошковой металлургией стало возможно получать МКМ с матрицей из осо-ботугоплавких сплавов - ниобия, вольфрама, молибдена и сплавов на их основе. Волокнистыми наполнителями (нитевидными кристаллами из тугоплавких соединений) эти матрицы армируют с целью придания им особых эксплуатационных свойств (ударопрочности, термостойкости и других специальных физических характеристик).
3. СПОСОБЫ ПОЛУЧЕНИЯ ПОЛУФАБРИКАТОВ И ГОТОВЫХ ИЗДЕЛИЙ
При разработке технологического процесса получения изделий из КМ приходится в комплексе решать многие вопросы: выбор армирующих и матричных материалов, их химическое взаимодействие, смачивание, способы ориентации армирующих волокон, способы окончательного объединения волокон и матрицы в единое целое (изделие), выбор оптимальных технологических режимов и др. Не существует универсального технологического процесса, пригодного для получения любого изделия из КМ. Неудачно выбранные технологический метод и режимы изготовления КМ приводят к тому, что прогнозируемые физико-механические и эксплуатационные показатели на практике не реализуются.
Технологическому процессу получения КМ предшествуют вспомогательные операции: очистка, мойка и сушка волокон, объединение их в жгуты или каркасы, получение элементарных соединений матрица - волокно, сборка чередующихся слоев элементов и др.
Короткие армирующие элементы вводят в матричные материалы в разори-ентированном состоянии или предварительно ориентируя их в определенном направлении.
В производственных условиях из ра-зориентированных кристаллов, коротких волокон и проволок изготовляют полуфабрикаты: войлок, маты и т.д. Используют различные способы войлокования: жидкостные, воздушные, вакуумные и гравитационные. В качестве примера на рис. 8.4 показана схема жидкостного войлокования коротких волокон. Суспензия из питающего бака 1 поступает на сетку 2, покрытую фильтровальной бумагой. С помощью роликов 3 она проходит над камерами 4 для отсоса жидкости. Прижимными валками 5 войлок уплотняется и поступает в печь б, где он просушивается или, при необходимости, спекается.
Для получения армирующих элементов с требуемой ориентацией применяют технологию текстильной переработки. Короткие волокна перерабатывают в пряжу. Пряжей называют нить из коротких волокон, соединенных путем кручения. Пряжа может быть однородная (из одного вида волокна) или смешанная (из смеси различных волокон). Пряжу можно использовать для непосредственного армирования КМ или сшивать нитями в ткань или ленты. Сетки и ткани получают в результате ткацкой переработки непрерывных волокон и металлических проволок. Направление и порядок взаимного расположения армирующих элементов определяют их
! 2 3 4
\ \ м
шжжжжш
б) в)
Рис. 8.5. Схемы получения армированных пакетов (а), лент (б) и рулонов (в)
структуру и свойства. Возможны и другие варианты соединения отдельных волокон из пластичных материалов в единый армирующий элемент.
Жесткие волокна, например из вольфрама, молибдена, ниобия и их сплавов, ориентируют в материале матрицы в виде пакетов, листов, рулонов и т.п. Пакеты (рис. 8.5, а) получают путем послойной укладки рифленой фольги 2 из материала матрицы, армирующих волокон 3 и волокон 4 из материала матрицы или любого другого материала. Набранные таким образом пакеты определенной высоты соединяют полосами материала матрицы /. Ленты (рис. 8.5, б) получают путем поочередной укладки армирующих и матричных волокон между полосами. В отдельных случаях ленты сматывают в рулоны (рис. 8.5, в). Чтобы закрепить волокна на матричной полосе, на них плазменным напылением наносят тонкий слой материала матрицы.
На предприятиях обычно организуют выпуск полуфабрикатов в виде листов, труб, профилей и т.д. Основой производства полуфабрикатов и изделий из КМ служат так называемые препреги, представляющие собой однослойные ленты с одним рядом армирующих волокон или тканей, пропитанных или покрытых материалом матрицы с одной или с обеих сторон. Используют также пропитанные металлом жгуты волокон или индивидуальные волокна с покрытиями материалом матрицы.
Все технологические способы получения препрегов, полуфабрикатов и изделий из МКМ условно можно разделить на четыре основные группы: парогазофазные, жидкофазные, твердожидкофазные и твердофазные.
Парогазофазные способы применяют для нанесения на волокна жгута, ленты и ткани барьерных или технологических покрытий. Применять эти способы для полного компактирования КМ нецелесообразно, так как они характеризуются низкой производительностью процесса.
Жидкофазные способы используют на всех стадиях производства КМ - от полуфабрикатов до изделий. К ним относятся протяжка волокон, жгутов и тканей через расплав материала матрицы для пластифицирования волокна и получения соответствующих препрегов; пропитка пакетов препрегов материалом матрицы на стадии получения полуфабрикатов или готовых изделий из КМ; плазменные и некоторые другие виды газотермического распыления металлов для получения ленточных препрегов и "корковых" полуфабрикатов, подвергаемых последующему компактировапию методами обработки давлением.
Универсальным и наиболее освоенным промышленностью способом изготовления КМ является пропитка. Этот способ имеет ряд преимуществ перед твердофазными способами изготовления МКМ: более высокую производительность процесса; практическое отсутствие силового воздействия на компоненты, что обеспечивает возможность получать крупногабаритные изделия, в том числе сложного фасонного профиля; возможность создания непрерывности процесса пропитки, механизации и автоматизации технологического процесса.
В зависимости от условий обеспечения смачиваемости системы армирующий каркас - расплав материала матрицы применяют две схемы пропитки: самопроизвольную пропитку и пропитку под давлением.
Самопроизвольную пропитку осуществляют путем заливки расплавленного
материала в форму с уложенным в ней каркасом из армирующих волокон.
Наиболее перспективным и производительным является способ непрерывной протяжки армирующих каркасов через расплав материала матрицы. По этой схеме разрабатываются технологические процессы непрерывного литья полуфабрикатов из КМ. Принципиальные преимущества этого способа производства КМ - в его непрерывности, малом времени контактирования волокон с расплавом, малых трудозатратах и капиталовложениях. Перспективной считается вертикальная схема пропитки, при которой волокна, ленты, препреги проходят через ванну с расплавом и на выходе через фильеру получают форму сечения полуфабриката (рис. 8.6). Поэтапное сужение сечения фильеры на выходе позволяет получать полуфабрикаты с высоким объемным содержанием армирующих волокон.
Принудительную пропитку обычно используют при недостаточной смачиваемости в системе матрица - волокно или для ускорения процесса пропитки для компонентов с удовлетворительной и хорошей смачиваемостью.
В качестве примера на рис. 8.7 показана схема вакуумной пропитки КМ. Заполнение пор расплавленным металлом осуществляется за счет разности между атмосферным давлением и давлением, созданным в порах при вакуумировании. Вертикальное расположение тигля обеспечивает ускорение процесса протекания за счет дополнительного давления массы расплава.
Разновидностью пропитки под давлением является создание избыточного давления сжатым газом на зеркало расплавленного металла. Эффективность процесса пропитки значительно повышается при наложении ультразвуковых колебаний.
Твердожидкофазные способы используют для получения полуфабрикатов и изделий из КМ методами горячего прессования, волочения и прокатки пакетов, препрегов. Необходимым условием является нанесение матричного материала на ленты, препреги и ткани в таком количестве, чтобы его оказалось достаточно в жидкой фазе для равномерной пропитки волоконного каркаса расплавом. Прессование осуществляется в интервале кристаллизации сплава материала матрицы. Прессование КМ в условиях твердожидко-го состояния матричных сплавов способствует снижению давления и уменьшает вероятность разрушения волокон.
Твердофазные способы используют для компактирования изделий из полуфабрикатов. Основным критерием применимости твердофазных способов является возможность деформирования компонен
тов КМ. Но при этом совместное пластическое деформирование матрицы и волокон не должно приводить к разрушению арматуры. Это обстоятельство является основным препятствием для более широкого использования способов соединения арматуры и матрицы пластическим деформированием. Если в качестве арматуры выбраны волокна или проволоки со значительным запасом пластичности, то уплотнять МКМ можно ковкой, прокаткой, импульсным прессованием и др. Возможны также различные способы диффузионной сварки.
К процессам соединения в твердофазном состоянии предъявляют высокие требования по подготовке компонентов: высокая чистота поверхностей контактирования, отсутствие оксидных пленок и т.д. Это является дополнительным препятствием для более широкого применения твердофазных способов при изготовлении изделий из КМ.
Глава III
Из приведенных технологических способов получения изделий из МКМ наиболее освоены в промышленном масштабе пропитка, непрерывное литье, прокатка. Серьезным тормозом к применению МКМ в отраслях промышленности с массовым производством является их высокая стоимость.
ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ
1. Перечислите основные армирующие материалы для МКМ.
2. В чем заключается физическая сущность получения волокон углерода и бора?
3. Какими способами получают нитевидные кристаллы?
4. Каково назначение барьерных и технологических покрытий волокон?
5. Перечислите основные материалы матрицы.
6. Перечислите основные способы получения полуфабрикатов и готовых изделий из МКМ.
7. Почему улучшается качество получае-
мых заготовок при непрерывной пропитке?
1. СПОСОБЫ ПОЛУЧЕНИЯ И ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА ПОРОШКОВ
Порошковая металлургия - отрасль технологии, занимающаяся получением порошков и изделий из них.
Конкурентная способность порошковой металлургии по сравнению с традиционными способами получения заготовок литьем из металла все больше проявляется за счет следующих факторов: возможности получения материала со специальными физическими и эксплуатационными свойствами; применения в качестве исходных материалов отходов основного производства - обрезков, стружки, окалины и т.д., а также получения материала из руды, минуя стадию металлургии; практического отсутствия необходимости дальнейшей механической обработки получаемых заготовок и тем самым снижении трудоемкости и себестоимости их изготовления и увеличении коэффициента использования материала; совмещении процессов получения необходимого материала и готового изделия; высокого уровня механизации и автоматизации всех технологических операций.
Технологический процесс сводится к формованию порошковых или волокнистых компонентов в заготовки, которые подвергают термической обработке - спеканию. Изготовление заготовок из металлических КМ с волокнистыми наполнителями сдерживается относительно высокой стоимостью самих волокон.
Промышленность выпускает различные металлические порошки: железный, медный, никелевый, хромовый, кобальтовый, вольфрамовый, молибденовый, титановый и др. Способы получения порошков условно разделяют на механические и физико-химические.
Наибольшее практическое применение имеет способ механического измельчения исходного сырья (стружки, обрезков, скрапа и т.д.). Измельчение проводят в механических мельницах. Размолом получают порошки из легированных сплавов строго заданного химического состава и из хрупких материалов (кремний, бериллий и т.д.).
Промышленностью также освоена технология получения порошков путем раздува жидкого металла струей газа или жидкости. Наиболее простым и экономичным является способ раздува жидкого металла струей воды под определенным давлением.
При применении механических способов исходный продукт измельчают без изменения химического состава. К недостаткам механического измельчения следует отнести высокую стоимость порошков, так как в нее входит стоимость изготовления исходных металлов и сплавов.
К физико-химическим способам относят такие технологические процессы, в которых получение порошка связано с изменением химического состава исходного сырья или его состояния в результате химического или физического (но не механического) воздействия на исходный продукт. Физико-химические способы получения порошков более универсальны, чем механические. Возможность использования дешевого сырья (руды, отходов производства в виде окалины, оксидов) делает многие физико-химические способы экономичными. Порошки тугоплавких металлов, а также порошки сплавов и соединений на их основе могут быть получены только физико-химическими способами.
Наиболее дешевы порошки, получаемые методом восстановления руды и окалины. Почти половину всего порошка железа получают восстановлением руды.
Дата добавления: 2015-07-25; просмотров: 90 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
I Притирка 15 страница | | | I Притирка 17 страница |